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Abstract

This third instalment on non-linear waves examines in detail the chromatographic behavior of multicomponent systems
whose sorption equilibria are uniformly competitive and without selectivity reversals. This very common class includes
systems with multicomponent Langmuir isotherms, but is not restricted to them. An examination of particle velocities and
wave velocities leads to a set of rules for what may and may not happen in a column if sorption equilibrium is of this type.
As an example, all qualitative features of frontal analysis are deduced without calculation. The arguments also illustrate how,
more generally, wave theory can be used to deduce chromatographic behavior from given equilibrium properties. In addition,
an easy-to-use mathematical procedure is presented with which column responses in systems with Langmuir sorption
isotherms can be calculated. The procedure is based on a transformation of the concentration variables. Compositions of
plateau zones between waves, wave velocities, and sharpening criteria are obtained as simple algebraic expressions or
conditions in terms of the values of the new variables in only the initial and entering fluids. The new variables are easily
transformed back into concentrations where this is desired. Three fully calculated examples of five-component frontal
analysis, separation of a three-component mixture by displacement development, and two-component elution from an
overloaded column show how analytical solutions can be obtained for many cases of practical interest. As in Part II, the
assumptions of ideal chromatography are taken for granted.
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1. Introduction

Part I of this series has dealt with fundamental
properties of waves in non-linear single-component
chromatography [1]. Part II has extended the cover-
age to multicomponent systems with interactions
between the solutes, concentrating on general aspects
of wave interference and the concept of coherence
[2]. The current, third instalment examines specifi-
cally one very common class of systems: those with
sorption equilibria obeying the Langmuir equations
or behaving in a similar manner. Qualitative rules for
chromatographic behavior in such systems are de-
duced from general considerations of conservation of
matter and of the velocities at which solute mole-
cules and their concentrations move through the
column. In addition, an easy-to-use mathematical
procedure is shown for quantitative calculations of
column responses in systems in which the Langmuir
equations for sorption equilibrium are an acceptable
approximation. Because it is so simple and fast, this

procedure also recommends itself for obtaining
approximate answers in systems that are merely
Langmuir-like.

As in the previous instalments, attention is focused
on what will develop in the column locally from
given concentrations and concentration gradients,
regardless of when and where these conditions exist
and how they arose in the first place. Examples then
show how this knowledge can be used to deduce
column responses under specific initial and entry
conditions.

A rudimentary understanding of the fundamentals
of waves and wave interferences, discussed in the
previous two instalments, will be required for fol-
lowing the presentation here. The most essential
concepts and ideas are briefly reviewed in Section 3,
and Table 7 provides a “dictionary” of frequently
used terms. However, at least a perusal of Part II is
recommended in addition. Also, the reader not
familiar with the wave-theory picture of frontal
analysis, displacement development, and overload
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elution may find a review of the respective sections
in Part II helpful.

As in Part II and for the same reasons, the
assumptions of ideal chromatography are taken for
granted. Specifically, they are: local equilibrium
between the moving and the stationary phase, ideal
plug flow, mass transfer in axial direction by convec-
tion only, axially uniform volumetric flow-rate of
bulk moving phase, isobaric and isothermal behavior,
and absence of chemical reactions that transform
solutes (except adsorption or chemisorption). The
effects of nonidealities are largely the same as in
single-component systems, discussed in Part I, and,
in essence and with few exceptions, only make all
waves less sharp than ideal theory predicts. In
particular, except in extreme cases, they do not alter
the general features of the response pattern such as
sequence of waves and compositions of zones be-
tween the latter, and can usually be accounted for by
mere corrections to the results of ideal theory.

Most but not all of the material presented here has
been published previously, much of it by other
authors, if under different viewpoints. In particular,
early work by Glueckauf [3,4] contains solutions for
various cases with Langmuir sorption equilibria
including two-component elution from an overloaded
column. The fundamental studies by Rhee et al.
[5,6], as far as they relate to quantitative aspects of
chromatography, are essentially confined to Lang-
muir systems. Also, there is a close analogy in
mathematics between n-component Langmuir sys-
tems and (n+1)-component ion-exchange systems
with constant separation factors, for which the theory
has been worked out in great detail by Helfferich and
Klein [7]. The history of these developments has
recently been put in perspective by Guiochon and
Golshan-Shirazi [8]. The current instalment aims at
providing a rounded and reasonably comprehensive
picture, and references to earlier work have been
chosen to fit this purpose. We apologize to those who
may not have received due credit.

2. Langmuir and Langmuir-like equilibria

This section explains the types of isotherms to
which the current instalment is devoted.

2.1. Langmuir isotherms

The Langmuir equations for sorption equilibrium,
extended by Markham and Benton {9] to systems
with n sorbable solutes, are

a,C;

; (IIL.1)
14 2 (b))

q;,= for all j

(For definitions and explanation of symbols, see
Section 10 and Table 7.)

Langmuir [10,11] deduced his equation from
kinetic postulates whose rigor is open to question.
However, Egs. (Il.1) can instead be derived with a
thermodynamic argument (minimum of free energy
at equilibrium), showing it to be valid in ideal
systems [12,13]. If one takes Langmuir’s derivation
at face value, all b, coefficients necessarily are
positive, and the additive terms of the denominator
acquire physical significance: Each b,c; term (as
fraction of the total denominator) reflects surface
coverage by the respective solute i and so reduces
sorption of any solute j, and the leading 1 term (also
as fraction of the total) represents the extent of still
unoccupied surface area. Increased sorption of any
one solute discourages further sorption of all because
it decreases the still accessible free surface area.
Such equilibria are called competitive.

It has been argued that Eqgs. (II.1) are thermo-
dynamically consistent only if the ratio b,/a; of the
coefficients is the same for all solutes [14—16]. This
conclusion is based on an idealization of the state of
adsorbed molecules and implies that the ultimate
capacity (loading in moles at fluid-phase concen-
tration extrapolated to infinity) in single-solute sys-
tems is the same for all solutes, regardless of their
nature and molecular size (for a single solute, Egs.
(IIL.1) give g,=a;/b; for ¢;—>). Reality tends to
differ, mainly because larger molecules require more
space on or in the sorbent. In practice the Langmuir
equations can usually be fitted much better to
observed equilibria if the coefficient ratios are al-
lowed to differ from one another. Rather than worry
about finer points of thermodynamics, the practical
chromatographer who wants to stick with the simple
Langmuir equations will therefore not hesitate to
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work with unequal coefficient ratios, as will be done
here.

If thermodynamic consistency is not demanded,
Eqgs. (III.1) can also be used with negative values of
some b, coefficients [provided 2(b,c,)<1 under all
conditions, to guarantee that the g, cannot become
negative]. In this way, the equations can be fitted to
some ‘‘synergistic”’ sorption equilibria, that is, to
equilibria in which sorbed molecules of some solute
or solutes encourage rather than discourage addition-
al sorption of others. Here, such cases are not
counted as Langmuir or Langmuir-like, although the
mathematical transformation in Section 6 Section 7
remains applicable [7].

2.2. Langmuir-like isotherms

In practice, sorption equilibrium behavior often
resembles that of Eqs. (III.1), but not closely enough
for an acceptable quantitative fit even if the coeffi-
cient ratios are allowed to differ from one another.
Here, such equilibria will be called ‘‘Langmuir-
like”. To qualify as such, sorption equilibrium must
meet two conditions:

* no selectivity reversals,

e increased strength of competition for sorption
capacity decreases the distribution coefficients of
all solutes.

The condition of no selectivity reversals specifies
that the sorbent may not prefer a solute j over a
solute & at some compositions, but k over j at others.
Stronger competition results from either a concen-
tration increase of a solute or replacement of mole-
cules of one solute by those of another that is a
stronger competitor. (For mathematical criteria, see
Appendix A).

For later deductions, the key property of Lang-
muir-like sorption equilibria is:

'"The Langmuir isotherm becomes deficient at high loading
because it does not account for the fact that large molecules fit
less well into small patches between other adsorbed molecules.
So-called scaled-particle isotherms [16,17] and isotherms based
on ideal adsorption theory [16,18,19] include this effect and are
thermodynamically consistent, but mathematically more complex.
They do not necessarily fit the definition of “‘Langmuir-like”
used here.

» The distribution coefficients g;/c; of all solutes
vary in the same direction, that is, either increase
jointly or decrease jointly as the composition of
the fluid phase is varied.

This comes about because the changed strength of
competition with change in composition affects all
solutes in qualitatively the same way.

3. Waves, wave interference, velocities, and
coherence

This section presents a brief outline of the most
essential elements of Parts I and II, to the extent that
the material in the current instalment builds on them.
The outline should suffice for the reader who only
wishes to get a general idea of what may or may not
happen in Langmuir or Langmuir-like systems and is
content with taking the results of deductions and
derivations at face value. However, the reader who
desires to follow the deductions and understand how
he can use such arguments to derive his own rules
for systems with different equilibrium properties will
benefit from a study of the previous instalments,
especially the sections on velocities (1.2), sharpening
behavior of waves (1.4 and 1.5), coherence (I1.4 and
I1.5), and wave interference (II.8)2.

In the context of chromatography, a wave® is
defined as a monotonic variation of solute con-
centrations (and possibly temperature) in the column.
It may be self-sharpening or nonsharpening. A self-
sharpening wave sharpens into, or remains, a so-
called shock. In contrast, a nonsharpening wave
spreads as it travels. Granted the premises of ideal
chromatography, shocks are ideally sharp concen-
tration steps (i.e., concentration discontinuities), and
the widths of nonsharpening waves increase linearly
with traveled distance or elapsed time. Moreover, the
sharpening or spreading behavior depends only on
the sorption equilibrium properties; this is because

*Sections, tables and figures from Parts I and II of this series are
referred to by “I” or “II”, followed by the number of the
respective item.

*Names in earlier sources include boundary, front, mass-transfer
zone, and transition.
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the simplifying idealizations rule out all other disper-
sive effects.

In multicomponent systems a wave may be coher-
ent or noncoherent. If it is noncoherent, the con-
centration profiles of the different solutes in the wave
shift relative to one another, causing the wave to
break up into several coherent waves that separate
from one another, much as do the peaks in ordinary
(linear) analytical chromatography. In contrast, in
any coherent wave the profiles of the different
solutes advance in perfect synchronization: Concen-
trations ¢, ..., ¢, of the different solutes that coexist
with one another at the same point in distance and
time will travel jointly at the same speed and so
remain in one another’s company. The wave may
sharpen or spread, but will remain a single wave
rather than breaking up into several. Coherence or
the lack of it is a property of a wave, not of an entire
column or effluent history, and relates less to the
current state of affairs than to what will happen to
the wave on its further travel. Coherence can be
viewed as a ‘“‘stable’” condition because any com-
position variation at the column inlet or in the
column, if given enough time and not further dis-
turbed, sorts itself out into a set of coherent waves. If
the initial composition of the column is uniform and
the composition of the entering fluid remains con-
stant [this is called a Riemann problem for short], all
waves originate at one and the same distance—time
point: the column inlet and start of the operation. In
ideal chromatography, all waves then are coherent
from the outset. In conventional analytical chroma-
tography (elution development), coherence is at-
tained everywhere when all solute peaks have sepa-
rated from one another.

In ideal chromatography, the maximum number of
coherent waves into which a single noncoherent
wave may break up is equal to the number of
sorbable solutes (rare exceptions in systems with
selectivity reversals are of no interest here).

If the composition of the entering fluid is changed
repeatedly or the initial composition of the column
was not uniform, faster coherent waves may catch up
and interfere with slower ones that were produced
earlier at the column inlet or originated farther
downstream in the column. Such an interference of
two coherent waves produces temporarily a single
noncoherent wave, which is subsequently resolved

into new coherent waves: For resolution of a noncoh-
erent wave into coherent ones, it makes no difference
whether this occurs at start at the column inlet or at a
later time through wave interference farther down-
stream.

A key argument in the current instalment operates
with particle velocities and wave velocities in the
column®. The distinction between the two is crucial.
The particle velocity of a solute is defined as the
average velocity at which molecules of that solute
advance in the direction of flow. For a solute j it is
given by

vO
v

A (plelg;lc; (L:3)

Eqgs. (1.5) is equivalent to the familiar relationship
between retention time fg, column deadtime ¢z, and
capacity factor k' in linear chromatography [20]

te = t,(1+ k) (IIL.2)

as is apparent from the fact that (p/€)q,/c; = k' in
the linear case and that the velocities v, and v° are
inversely proportional to the retention time f; and
deadtime ¢,, respectively.

Eqgs. (1.5) is readily derived with the argument that
the molecules make headway, at the velocity v° of
moving-phase flow, only during the fraction of time
they spend in that phase rather than on or in the
stationary sorbent. This derivation makes clear that
the particle velocity is a velocity of an identifiable
object. In contrast, the wave velocity of a solute —
definable only where there is a concentration gra-
dient of that solute — is the velocity at which a given
concentration value of that solute advances. For a
solute j in a single-component ideal system it is
given by

o

v
< 1+ (ple)dg;/ de;

v (L4)
This equation can be derived from conservation of
matter of the solute in a differential cross-sectional
volume element of the column (inflow minus outflow
equals change in content). The wave velocity is a

*In Ref. [7], written before the notation of wave theory was
adopted, the terms species velocity and concentration velocity (or
composition velocity) are used.
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velocity of a given value of a dependent variable, in
isothermal chromatography of a concentration or
composition. The wave velocity depends on the
slope dqj/dcj of the isotherm (i.e., of its tangent) at
the respective concentration, whereas the particle
velocity depends on the slope g,/c; of the chord to
that point (see Fig. 1); only if the sorption isotherm
1s linear, so that dg;/dc;=gq,/c;, are the two veloci-
ties the same.

Egs. (1.4) for the wave velocity is also valid in
multicomponent systems, but the stationary-phase
concentration g; of a solute j in these depends not
only on the moving-phase concentration c; of that
solute, but on those of all others as well. The
derivative dg;/dc; thus is not defined as a total
derivative. Rather, the ratio of the concomitant
variations of g; and c; it expresses can in principle
assume any value, even if the concentrations of all
solutes are given. However, the coherence condition
of equal wave velocities of all solutes at the respec-
tive point in distance and time allows only certain
distinct values (also called eigenvelocities). At which
of these velocities v, a given composition c,,..., ¢, in
a coherent wave actually travels depends on the
nature of the composition variation across the wave
(for coherent velocities in Langmuir-like systems,
see also next section).

The wave velocity of a shock of a solute j is given
by

o]

v

Yae, = T (ple)Aq,/Ac;

(1.6)

where A indicates the difference across the shock.

2 8aléc
E m\'\ge“t s
g Z
Ve
c v
° R
g /o
8 /épqe
s
/.
S
7/

conc. in moving phase, c;

Fig. 1. Single-component isotherm with tangent and chord at
given concentration.

Eqgs. (1.6) can be derived from conservation of matter
for the solute across the traveling shock. If the shock
is coherent, the concentrations of all solutes vary
stepwise across it, and all these steps advance with
the same velocity, v,.

Failure to distinguish between particle and wave
velocities quickly leads to paradoxes and contradic-
tions, as a simple example may demonstrate. Con-
sider a coherent wave in a multicomponent system.
At any point in distance and time within that wave,
the different solutes necessarily have different par-
ticle velocities because of their different affinities for
the sorbent (the high-affinity solutes spending a
greater fraction of time in or on the sorbent and so
advancing more slowly). However, if the wave is
coherent, the respective composition within the wave
advances at one single velocity. If there was no
difference between particle and wave velocities, this
would be impossible and no wave involving more
than one solute could be coherent. In reality, the
composition advances at its coherent wave velocity
(one of its eigenvelocities), which differs from all the
particle velocities of the solutes.

4. Rules for coherent waves and patterns:
affinity cuts and keys

The present section states rules for what may and
may not happen at coherent waves in Langmuir and
Langmuir-like systems. These rules allow the essen-
tial features of column responses under almost any
conditions to be predicted with little or no mathe-
matics, as will be demonstrated with an example in
the next section.

Also shown is how the rules can be deduced from
considerations of particle and wave velocities,
granted Langmuir or Langmuir-like equilibrium and
coherent behavior [21]. While not difficult at all, the
arguments are somewhat involved and will take time
to think through. The reader prepared to accept the
rules at face value may skip their deduction without
loss in continuity. He may wish to return to it for a
deeper understanding of the physical phenomena or
if he wants to use the line of argument for deriving
his own rules for a system with different sorption
equilibrium properties. Mathematical proof for all
rules is given in Appendix A.
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4.1. Rules for coherent waves

Arbitrary composition variations are in general
noncoherent. Coherence allows only certain kinds of
composition variations across any one wave. The
most important rule for Langmuir or Langmuir-like
systems describes the properties of these variations.

Consider the solutes ordered, and numbered, in the
sequence of decreasing affinity for the sorbent
(corresponding to sequence of decreasing capacity
factor £’ in linear chromatography). In principle, the
solutes present at a coherent wave can be divided
into two groups: those whose concentrations increase
across the wave, and those whose concentrations
decrease. If the wave is coherent, the solutes of one
group must all have higher affinities for the sorbent
than do all those of the other. In other words, in the
affinity sequence the two groups do not overlap. As
an example, in a five-component system, the con-
centrations of solutes 1, 2, and 3 might increase
while those of 4 and 5 decrease. In contrast, the
wave is necessarily noncoherent if, for example, the
concentrations of solutes 1, 2, and 4 increase and
those of 3 and 5 decrease.

The rule can be stated more concisely [22]:

e Every coherent wave has an ‘‘affinity cut” that
divides all solutes into a high-affinity group and a
low-affinity group that do not overlap. Across the
wave, the concentrations of the members of the
two groups vary in opposite directions.

The “cut” can be shown by a vertical line in the
list of solutes. For example, for a wave in a five-
component system with solutes 1, 2, and 3 in one
group and 4 and 5 in the other:

23 | 45 (IIL3)
high—affinity low —affinity
solutes solutes

Such a wave is said to have a 3|4 affinity cut.

The affinity-cut rule must be supplemented to
cover cases in which the concentrations of all solutes
vary in the same direction:

e Across a coherent wave all concentrations may
very in the same direction. In this case, all solutes

should be counted as belonging to the high-affini-
ty group.

That is, the low-affinity group may have no
members. For example, in a five-component system a
5|]- cut is possible, a —|1 cut is not. The reason for
this classification will become apparent later.

For a concise terminology it proves convenient to
borrow the concept of keys from distillation. In
general, a coherent wave has a high key and a low
key. The keys are solutes which are adjacent in the
affinity sequence and whose concentrations vary in
opposite directions. In the example IIL.3 above,
solutes 3 and 4 are the high key and low key,
respectively. If all concentrations vary in the same
direction, the wave has only a high key, no low key.

Additional important general rules are:

e No more than one solute can be absent from one
side of a coherent wave while being present on
the other. That solute can only be the high key or
low key. At one and the same wave, the high key
may be absent from one side and the low key
from the other.

e The lower the affinity of the keys for the sorbent,
the faster is the wave.

o A wave is self-sharpening if the concentrations of
the high key are higher on the upstream side than
on the downstream side, and is nonsharpening if
the opposite is true.

Exceptions to the last rule are possible with
isotherm shapes that are unusual in competitive
sorption equilibria (isotherms with loci of inflection).

The use of the rules for prediction of response
behavior will be illustrated in Section 5, to which the
reader can advance without loss in continuity.

4.2. Deduction of rules

Consider a multicomponent, coherent wave ad-
vancing through the column between plateaus (that
is, zones of uniform composition) on its upstream
and downstream sides. It is easiest to think of the
wave as a shock, but the arguments are equally valid
for a diffuse self-sharpening or nonsharpening wave.
The first step is to recall that, by virtue of the
definition of Langmuir-like equilibrium, the distribu-
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tion coefficients g;/c; of all solutes will be larger on
one side of the wave than on the other: larger on the
side where competition for sorption capacity is
weaker (that strength of competition must be differ-
ent on the two sides if the wave is coherent is shown
farther below). According to Egs. (L.5), where the
distribution coefficients g,/c; of the solutes are
larger, the particle velocities are lower. Therefore:

Conclusion 1: Each solute’s particle velocity is
lower on the wave side on which competition for
sorption capacity is weaker.

This may be the upstream or downstream side. It
is not possible, however, that one solute’s particle
velocity is higher on the downstream side of the
wave while another’s is higher on the upstream side.

Let us examine next what happens to solute
molecules when they overtake the wave or are
overtaken by it. For that purpose we divide the
solutes into “‘faster’” ones whose particle velocities
are higher than the velocity of the wave, and
“slower” ones whose particle velocities are lower.
At each moment in time the wave will be overtaken
by the molecules of the faster solutes and will
overtake those of the slower solutes. (This is a loose
way of speaking; “faster,” ‘“‘slower,” ‘‘overtaking,”
etc., are used as though each solute molecule were
moving continuously at the solute’s particle velocity
according to Egs. (I.5); however, that velocity is
averaged over a large number of molecules of the
respective solute or a long time span, and in reality
each individual molecule alternates between moving
at the velocity of moving-phase flow and sitting still,
and so may overtake a wave and in the next moment
be overtaken by it.)

When ““faster” solute molecules overtake the
wave, they enter a zone downstream in which
competition for sorption capacity is different. If
competition in that zone is stronger, they speed up; if
competition there is weaker, they slow down [see
conclusion (1) above]. Conservation of matter re-
quires the concentration of the solute to decrease
when its molecules speed up, and to increase when
its molecules slow down. This effect can be rational-
ized as follows: If the wave is coherent and thus
travels “‘as is”’, without concentration profiles bulg-
ing up or caving in, the flow of any solute relative to
the wave (number of molecules that pass per given
time span through a given frame of reference that

moves at the velocity of the wave) is the same
upstream and downstream of the wave. As a result,
where there are fewer solute molecules per centime-
ter of column, they must advance faster because the
number passing through the given frame of reference
during the time span must then include some that
were farther away at the start of the time span. An
analogy that helps to understand this effect is the
flow of an incompressible fluid such as water in a
pipe: Where the pipe narrows, the velocity of the
fluid increases; where it widens, the velocity de-
creases (see Fig. 2). In that case the reason is that the
volumetric flow-rate (volume per unit time passing a
given point) is the same everywhere, so that the
velocity (volume per unit time and unit cross-sec-
tional area) is inversely proportional to the cross-
sectional area. We can conclude:

Conclusion 2: Solutes faster than the wave have
lower concentrations on the wave side where compe-
tition for sorption capacity is stronger.

The same line of argument can be applied to the
solute molecules being overtaken by the wave. Their
velocities vary in the opposite manner. What counts
for conservation of matter, however, is the velocity
relative to the wave, and that relative velocity is
lower for the molecules of a solute where they are
more nearly as fast as the wave. As a result, the
concentrations are higher on the upstream side (the
side the molecules enter) if competition there is
stronger, and are lower on that side if the opposite is
true. Thus:

Conclusion 3: Solutes slower than the wave have
higher concentrations on the wave side where
competition for sorption capacity is stronger.

A comparison of conclusions (2) and (3) above
shows:

Conclusion 4: Across any coherent wave, the
concentrations of solutes faster and slower than the
wave vary in opposite directions.

ﬂ
. A ya
Fig. 2. Flow of incompressible fluid in pipe (schematic). Lengths
of arrows characterize velocity of flow.

]

f
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We can identify the faster and slower solutes by
their equilibrium behavior. The stronger the affinity
of a solute for the sorbent, the larger is its dis-
tribution coefficient ¢,/c; and, according to Eqgs.
(1.5), the lower is its particle velocity. Thus, all the
solutes faster than the wave have lower affinities for
the sorbent than do all the solutes slower than the
wave. This fact combined with conclusion (4) above
yields the affinity cut rule, which was stated before
without proof.

The high key is the fastest of the high-affinity
solutes, all of which are slower than the wave.
Similarly, the low key the slowest of the low-affinity
solutes, all of which are faster than the wave.
Accordingly:

Conclusion 5: The wave velocity is intermediate
between the particle velocities of its high key and
low key.

This shows that waves are faster if their keys have
lower affinities, as was stated earlier. Moreover,
since any given composition ¢ ,..., ¢, can exist in a
coherent wave of any affinity cut, it can advance at
different velocities (its eigenvelocities), depending
on the cut of the wave.

The question remains whether the solutes at a
coherent wave can all be faster than the wave itself,
or all be slower. Given Langmuir-like sorption
equilibrium, the second possibility exists, the first
does not. This can be shown as follows. A solute
overtaking the wave either enters a zone with
stronger competition, and then must have a higher
particle velocity and lower concentration in that
zone; or it enters a zone with weaker competition,
and then must have a lower particle velocity and
higher concentration in that zone. In both cases, the
concentrations must be higher where competition is
weaker. But this cannot be true for all solutes
simultaneously because in a competitive equilibrium,
by definition, the strength of competition increases if
all solute concentrations increase. On the other hand,
if all solutes are slower than the wave, their con-
centrations in the zone with weaker competition must
be lower, as is automatically the case if equilibrium
is competitive. This proves that the concentrations of
all solutes may vary in the same direction, but only if
the solutes are slower than the wave and thus all
belong to the high- rather than low-affinity group. In
terms of keys, a coherent wave across which all

concentrations vary in the same direction has only a
high key, no low key; in terms of velocities, the
wave may be faster than all solutes, but not slower
than all.

Let us now establish which solutes might be
absent from one side of a coherent wave while being
present on the other. The molecules of such a solute
cannot overtake the wave, nor can they be overtaken
by it. Consequently, the particle velocity of that
solute must equal the wave velocity. (If the wave is
diffuse, the particle velocity equals the wave velocity
where the concentration of the respective solute
becomes infinitesimal.) Since the particle velocities
of the solutes differ from one another, this can be
true for only one solute on each side of the wave.
Moreover, that solute must be the fastest of the
high-affinity (slow) group or the slowest of the low-
affinity (fast) group, that is, it must be the high key
or low key. It is possible, however, that the high key
is absent from one side of the wave while the low
key is absent from the other. This rule wds also
stated earlier.

That competition for sorption capacity cannot be
equally strong on the two sides of a coherent wave
can now be recognized as a consequence of the
affinity-cut rule. Competition is necessarily stronger
on the side where the concentrations of all high-
affinity solutes are higher and those of all low-
affinity solutes are lower. Competition can only be
equally strong if the two compositions are the same.
A single coherent wave (defined as a monotonic
composition variation) can obviously not exist be-
tween equal compositions. However, a coherent
pulse (consisting of two waves with opposite com-
position variations) can.

We can now turn to the question under what
conditions a plateau between two coherent waves
grows in length, or shrinks, or retains its length.
Because waves with keys of higher affinities are
faster:

e A plateau between two coherent waves grows if
the keys of the wave on the downstream side have
lower affinities for the sorbent than do those of
the wave on the upstream side. The plateau
shrinks if the opposite is true.

For example, a plateau between a wave with 3}4
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Table 1

Properties of coherent waves and plateaus between coherent waves in n-component Langmuir-like systems (solutes numbered in sequence of

decreasing affinity for sorbent)

Slowest wave

Second-slowest

Third-slowest General wave Fastest wave

wave wave

Waves

Affinity cut (high key|low key) 12 2/3 34 klk=1 n|-
High-affinity group Solute 1 Solutes 1,2 Solutes 12,3 Solutes 1,....k All solutes
Low-affinity group Solutes 2,3,...,n Solutes 34,....n Solutes 4,...n Solutes k+1,...,n None
Possible concentration variations across self-sharpening wave in direction of flow"

Decrease Solute 1 Solutes 1,2 Solutes 1,2,3 Solutes 1,....k All solutes
Increase Solutes 2.3,...,n Solutes 3.4....n Solutes 4,....n Solute k=1,...,n None
Possible concentration variations across nonsharpening wave in direction of flow*

Decrease Solutes 2,3,....,n Solutes 3.4,...n Solute 4,...n Solute k=1,....n None
Increase Solute 1 Solutes 1,2 Solutes 1,2,3 Solutes 1,...k All solutes
Coherent velocity, v, v, =u, =0, v, = = v, =V, =, U SU. S0, v =,
Solutes that may be absent from Solutes 1,2 Solutes 2,3 Solutes 3,4 Solutes kk=1 Solute n

one side while present on other
(but not both from same side)

Plateaus
Plateau between coherent waves

Grows if keys of upstream wave have higher affinities for sorbent than do those of downstream wave

Retains length if between diffuse waves of same affinity cut
Shrinks under all other circumstances

* Exceptions to sharpening behavior are possible if sorption equilibrium is other than ‘“‘normal”.

cut upstream and one with 4|5 cut downstream
grows; a plateau between a wave with 3|4 cut
upstream and one with 1|2 cut downstream shrinks.
Also:

s A plateau between coherent waves of the same
affinity cut retains its length if both waves are
diffuse, and shrinks if either or both waves are
shocks.

The shrinking is a result of the fact that the
velocity of a coherent shock is necessarily higher
than the wave velocity of the composition on its
downstream side, and lower than that of the com-
position on its upstream side (the resulting tendency
of the tail to catch up with the head is what makes
the wave sharpen into a shock or maintain that
sharpness). Note that a plateau may travel with
constant length between two waves of the same
affinity cut even if both waves are self-sharpening; in
that case it does so as long as the waves are still
diffuse at least in their portions bordering the

plateau. The plateau begins to shrink only when at
least one wave has sharpened into a shock in that
portion.

For ease of reference the most important prop-
erties of coherent waves in Langmuir and Langmuir-
like systems are summarized in Table 1°.

4.3. Non-Langmuir equilibria

The method of deducing properties of coherent
waves from a comparison of particle velocities and
wave velocities is not restricted to Langmuir-like
systems. The unambiguous classification into high-
and low-affinity groups of solutes slower and faster

*The rules for affinity cuts and sequence of waves of common
origin are in part equivalent to empirical rules developed by
Vermeunlen and co-workers for ion exchange from results of
numerical calculations (“‘alphabet rule,” “‘slope rule,” etc.) [23—
25]. Those rules, however, had no explanation in physics,
addressed only Riemann problems in ion exchange with constant
selectivity coefficients, and originally lacked the caveat that they
are not necessarily valid unless selectivity reversals are excluded.
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than the wave, respectively, is always possible,
regardless of the nature of sorption equilibrium.
However, without the guarantee that all distribution
coefficients increase or decrease jointly, there may
be non-conformist solutes with opposite behavior,
even if equilibrium is competitive in that it obeys
condition (II1.55). The affinity cut rule can then no
longer be relied upon because the concentration of
any such maverick varies like those of the members
of the other affinity group. Moreover, a solute may
act as maverick at some waves, but not at others.

5. Example: deduction of frontal analysis
pattern

The application of the rules deduced in the
previous section may be illustrated with the example
of frontal analysis (see also Part II, Sections I1.2 and
I1.7). As will be seen, in a case as simple as this, all
qualitative features of the pattern can be predicted
with the rules alone, without need for any calcula-
tion. On purpose, a case for which the response
pattern is well known has been chosen, so that the
rules can be seen to lead to predictions fully in
accordance with established behavior. For clarity, the
arguments are carried through for just five com-
ponents, but the extension to any larger or smaller
number of solutes is obvious.

In frontal analysis the entering fluid contains all
solutes, the column initially contains none. The
initial composition of the column is uniform and the
composition of the entering fluid is kept constant. All
waves therefore originate at one distance—time point
— start of operation and entry to column — and fan
out as they travel with different velocities (see Fig.
3). There is no wave interference, and all waves are
coherent from the start. At all times, faster waves are
downstream of slower ones.

With five solutes, a pattern generated by a single
starting variation may have as many as five waves.
Any wave that is slower than another must have keys
of lower affinities than the other, otherwise the
waves would not become separated by plateaus that
grow in length. Accordingly, the five possible waves,
in the sequence from slowest to fastest, must have
the cuts 1|2, 2|3, 3|4, 4|5, and 5|-, there being no
cuts other than these five. The possibility that one or

solutes solutes

12,3,45

front of
h.2,3 4, solute 1

2345 solute 2

column solutes
3,45 solute 3

45 solute 4

solute §

distance, z

solutes 1,2, 3.4, 5

time, t

Fig. 3. Frontal analysis: operating procedure (top) and distance—
time diagram with wave trajectories (bottom).

several of the five waves are missing will be ruled
out later.

Solute 1 is present in the entering fluid, but absent
from the column initially, so there must be at least
one wave at which that solute is present on the
upstream side but absent from the downstream side.
This can only be a wave at which it is a key, and that
is so only at the wave with 1|2 cut, the slowest wave.
Solute 1, absent from the downstream side of that
wave and not a key at any faster wave, must then be
absent from the rest of the pattern. Solute 2 is
likewise present in the entering fluid, but absent from
the column initially, and so must also be present on
the upstream side but absent from the downstream
side of at least one wave and be a key at that wave.
In principle, this could be the wave with 12 cut or
the wave with 2|3 cut. Here, however, it can only be
the latter because solutes 1 and 2 cannot both be
absent from the same side of the same wave while
being present on the other side. Not being a key at



180 F.G. Helfferich | J. Chromatogr. A 768 (1997) 169-205

any faster wave, solute 2 must be absent from
anywhere downstream of that wave with 2|3 cut. By
the same argument, solutes 3, 4, and 5 are seen to be
present on the upstream sides and absent from the
downstream sides of the waves with 3|4, 4|5, and 5|~
cuts, respectively, and absent anywhere farther
downstream. Five waves are needed, one for each
solute to be the high key, so none of the five possible
waves can be missing.

At each wave the high key was seen to be present
on the upstream side but absent from the downstream
side, and to be the only member of the high-affinity
group. The rules require the concentrations of all
members of the other, low-affinity group to vary in
the opposite direction, that is, to be higher on the
downstream side than on the upstream side. In other
words, at each wave, the solutes that are present on
both sides must have higher concentrations on the
downstream side than on the upstream side.

Lastly, because at each wave the concentration of
the high key is higher on the upstream side than on
the downstream side, all waves normally are shocks.

This example illustrates how practical conclusions
can be arrived at and qualitative features of column
responses be deduced with the rules for coherent
waves alone, with no need for any calculation. It is
not always possible, however, to arrive in this way at
a picture as complete as that shown here for frontal
analysis. Of course, the frontal analysis pattern is
familiar to anyone working with nonlinear multi-
component chromatography, so the principal value of
its deduction here is not in confirming the known
but, rather, in establishing the conditions under
which it arises; this makes it possible to identify
what kind of deviations will occur under what
conditions if equilibrium is not Langmuir-like.

6. Mathematics of Langmuir systems: the /-
transformation

The quantitative calculation of column responses
in multicomponent systems by conventional methods
under initial and entry conditions of any complexity
is so lengthy and cumbersome that it requires a fairly
powerful computer or work station. However, if the
Langmuir Egs. (II1.1) is an acceptable approximation

to sorption equilibrium, even complicated cases can
be calculated with relative ease by hand or on a
pocket calculator. Analytical solutions can be given
for all cases with uniform initial and constant entry
conditions (i.e., Riemann problems) and some others
notably including elution of a binary mixture under
conditions of concentration and volume overload.
The procedure is applicable regardless of whether or
not the b,/a, coefficient ratio is the same for all
solutes, and even to equilibria in which some b,
coefficients are negative, provided only that Egs.
(IIL.1) are acceptable.

What mainly makes calculations of column re-
sponses in the conventional manner so lengthy is the
fact that the concentrations of all solutes vary across
each wave. Even in a case as simple as frontal
analysis, the compositions between the different
waves are unknown and must be calculated step by
step before emergence times of waves can be
determined. The mathematics become very much
simpler with a non-linear transformation of the
concentrations ¢,,..., ¢, into new dependent variables
h,..., h, that are the roots of a simple polynomial
[26]. For short, they will be called roots from here
on. The roots cannot be identified one-on-one with
individual components or properties. Rather, a vari-
ation of only one concentration changes all roots,
and a variation of only one root changes all con-
centrations. The principle of the transformation and
the general aspects of column behavior in terms of
the roots are outlined in the present section. The
relevant equations are shown in the next section and
are illustrated with three sample cases calculated step
by step in Section 8. A brief history of the trans-
formation, widely applicable also in many other
fields, is given in Appendix B.

The most important properties of the new vari-
ables are:

¢ Only one root h, varies across any coherent wave
and, with the roots numbered h,, h,,..., h, from
smallest to largest and the solutes numbered in the

order of decreasing affinity for the sorbent:

¢ The index of the root that varies across a coherent
wave corresponds to the high key of the wave.
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For instance, the root that varies across a wave
with 1/2 cut is A, ; in general, that which varies
across a wave with j[j+1 cut is h; .

For any system with uniform initial and constant
entry conditions, as in frontal analysis, the result is
that the compositions of all intermediate plateaus
between the waves can be written down immediately
in terms of only the roots of the initial composition
of the column, A,°, and of the composition of the
entering fluid, h;. For instance, for a five-component
system and with waves and plateaus numbered from
column inlet to outlet, the roots sets of the various
plateaus are:

entering fluid: h, hy h h, hy
wave 1 (high key 1)

plateau 2: h° K hy h hy
wave 2 (high key 2)

plateau 3: h° Rk h, h}
wave 3 (high key 3) (111.4)
plateau 4: R RS RS h, hy
wave 4 (high key 4)

plateau 5: h° h,° hy° h,° h;
wave 5 (high key 5)

initial fluid: h° h,’ h,° h° h°

This can be shown as follows: Across the slowest
wave, whose high key is solute 1, only A, varies.
Accordingly, in plateau 2 downstream of that wave
all other roots still have the same values as in the
entering fluid. Moreover, h, can vary across no other
wave, and so must change across the slowest wave
all the way from its value A, in the entering fluid to
its value #,° in the initial fluid. By the same token,
across the second, next faster wave, only 4, varies,
and must do so all the way from &, to h,°. Applying
that reasoning to all waves and roots one obtains the
compositions of the intermediate plateaus shown in
the pattern (II1.4) above.

Not only the composition of intermediate plateaus,
but also the velocities of coherent shocks and wave
velocities of compositions in diffuse coherent waves
are given by very simple algebraic expressions in
terms of the local values of the roots, as will be seen
in the next section. This allows column responses
even under fairly complex initial and entry con-
ditions to be calculated with relative ease.

Lastly, whether a coherent wave is self-sharpening
or nonsharpening can be seen immediately from the
behavior of its varying root [see criterion (I11.22) in
the next section]:

e A coherent wave is self-sharpening if the root that
varies across it has a higher value on the upstream
side than on the downstream side, and is nonshar-
pening if the opposite is true.

6.1. h-Transformation and composition path grids

The h-transformation makes working with com-
position path grids as described in Part II superflu-
ous. However, to illustrate the connection between
the two methods, Fig. 4 shows a conventional path
grid for a two-component Langmuir system and the
corresponding transformed grid with the roots 4, and
h, instead of the concentrations ¢, and c, as.the
coordinates. Upon transformation, the paths become
parallel to the axes by virtue of the property that only
one root varies across any coherent wave; the
watershed point W on the ¢, axis becomes a corner
of the diagram, and the “‘fast”-path portion of the c,
axis (above W) becomes the top border of the
diagram so that ¢, =0 along both the left and top
axes (h,=1/a, along the left axis, h,=1/a, along
the top axis). In n-component systems the geometry
of the transformed path grid is so that all paths of
any one family are parallel to one of the n axes: The
transformation has “‘orthogonalized” the grid.

w
| oy e mr— —m — —
s £\ I T
-~
g - 1
2 _ h1
s b— t— ——t —] — 4
g
: — 1
0 —_ - gy b—— 4 J 1
0 Via
conc. of solute 2, c2 hz

Fig. 4. h-Transformation: conventional two-component composi-
tion path grid with concentrations as coordinates (left) and
transformed grid with roots as coordinates (right).
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7. Equations of the h-transformation

This section and the next show the equations of
the h-transformation and their application to sample
cases. They are intended for the reader who wishes
to work with the transformation on his own prob-
lems, and can be skipped without loss in continuity.
The general equations for n-component systems may
look formidable to the non-mathematician, but are
easy to apply. However, since many practical prob-
lems involve no more than two components, the
simple forms to which the equations reduce in that
case are also shown.

Prerequisite for the use of the transformation is the
validity of the Langmuir Eqs. (I1I.1) with constant g,
and b, coefficients. The coefficient ratios b,/a; need
not be equal. Moreover, b, coefficients may be
negative, but some roots may then become imaginary
under some conditions, causing complications (for a
procedure of working with imaginary roots, see
Schlogl [27]).

7.1. Transformation of concentrations into roots
: 6
and vice versa

In an n-component system the n transformed
variables h; are obtained as the n roots of a polyno-
mial called the H function (hyperplane function):

- b, B
Z<aih_1)_1— 0

i=1

(IIL.5)

The reverse transformation from roots to concen-
trations is

[l@h - 1)
¢, == forall j (1IL6)
bjn(aj/a, -1
i=1
i#j

For two-component systems the equations reduce to

“The equations in this section are not identical with those given in

the Helfferich—Klein adaptation of the transformation for ion
exchange to Langmuir-type sorption [7]. The roots differ by a
constant factor. For Langmuir systems the procedure shown here
is more convenient.

bc, b,c, B
ah—1 azh—l_l_o (I1L.7)
and

_(a,h, — Diahy, — 1)

ST bada, -1
ah, — Da,h, — 1
e blz(az /):l‘_'l) ) (IIL8)
Lastly, for only a single component j:
h=(+bc)la; (111.9)
The roots of Egs. (II.5) are in the intervals
la,<h <lla,<h,<--:<l/a,<h, (IIL10)

(for two-component systems, 1/a, <h <l/a,<h,).
Within each interval the left-hand side of Egs. (IIL.5)
(the H function) is monotonic, making it easy to
obtain the roots even with only a pocket calculator.
As an example, the plot of the H function for a
three-component case is shown in Fig. 5.

Full sets of all n roots are needed even where one
or several solutes are absent from the respective
portion of the column. If a solute k is absent, the ¢,
term of the H function is zero, so that Egs. (IIL.5)
has one root less. The existing roots are then
numbered according to their intervals in condition
(II1.10), and the missing root is equated to the
reciprocal, 1/a,, of the a; coefficient of the absent
solute. If several solutes are absent, this same
procedure is applied to each.

Equations can also be given for transforming
stationary-phase concentrations g, into roots and vice
versa [7]. However, it is usually more convenient to

51 o i
o i i
4 L\
an | /a2 as h
H o 4 +
Vvl 0.5 1.0 1.5
21 i\
“ \ AINRY
% A H ;

Fig. 5. H function (left-hand side of Eqs. (IIL5) plotted vs 4) for
three-component composition with ¢, =1.5,¢,=12,¢,=14,a,=
6.0, a,=4.0,a,=20,b,=0.75, b,=0.5, b, =0.25 (all in arbitrary
consistent units).
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interconvert the g, and ¢; with the Langmuir Eqs.
(II1.1) and their inverse

(1/a;)q,
¢, =————— forall j

1-2, [(b,/a,)q;]

i=1

(IIL11)

7.2. Wave velocities’

As explained in Section 4, a given composition
¢,,-.., ¢, within a diffuse coherent wave can move
with different wave velocities (eigenvelocities), de-
pending on the affinity cut of the wave. For each
possible cut there is one such velocity, which is
intermediate between the particle velocities of the
high and low keys. In a wave with k|k+1 cut, the
varying root is #, and the coherent velocities (v_), of
the compositions are

wave with varying ,:  (v,),

o

v
= ~ Y
1+£ [hk [1 (a,.h,.)]

This equation gives the wave velocity of a com-
position with value A, of the varying root within the
wave. As the root value varies across the wave, so
does the wave velocity. (Note that all roots other
than A, remain constant across the wave.)

For a coherent shock with varying A, the velocity

(IT1.12)

is
shock with varying h,:  (vy),

o

v

1+§ wn e lln|
=1 =1
ik

1 (111.13)

where primes and double primes refer to the com-

"The equations in this series have been formulated in terms linear
velocities (distance per unit time) because these are easiest to
visualize. They could equally well have been cast in terms of
cumulative effluent volume instead of time, and column volume
upstream (distance from inlet multiplied by cross-sectional area)
instead of distance, as often done in theory of chromatography
[28,29]. At the expense of being more abstract, those variables
lead to slightly simpler algebra and make it easier to accommo-
date some complications such as variations of the volumetric
flow-rate or column diameter.

positions on the upstream and downstream sides of
the wave, respectively. (Note that all roots other than
h, remain constant across the shock.)

For two-component systems, Egs. (II1.12) and
Egs. (111.13) reduce to

wave with (v ),
varying h,:

=—————— wavewith ()
1+ __PIE_" varying hy: ’
a,a,hth,

o

- —-—UT (IIL.14)
p—

a,a,h h;

shock with (v 2D
varying h

o

=Y shockwith (,),

Ple " yarying h,:
Mt h, :

o

v
v (IIL15)
7
P+ —2=

’ 1
a,a,h hyh,

Egs. (II.12) to Egs. (IIL.15) give the real linear
velocities, v, that is, distance advanced per unit of
real time ¢ In practice it is more convenient,
however, to work with ‘adjusted* velocities, u, which
are distance advanced per unit of adjusted time .
The adjusted time is defined as

T=r—z/v° (I11.16)

At any distance z from the column inlet the adjusted
time clock starts ticking when a non-adsorbed
marker injected at =0 would pass that spot, that is,
when the fluid initially in the column void upstream
of the location z has been displaced. (The procedure
is commonly used in gas chromatography, where
adjusted retention times or volumes are measured
from the emergence of an air peak.) Fig. 6 illustrates
the relationship between the 7 and 7 scales. The
adjusted velocities corresponding to the real ones in
Egs. (1I1.12) to Egs. (III.15) are as follows. For
n-component systems:
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distance
~
3
~
~
~

time

Fig. 6. Scales of real time ¢ and adjusted time 7. At any distance z*
from column inlet, adjusted time is shorter by time span z*/v°
required to displace fluid from interstitial void upstream.

diffuse wave with varying ,:  (u,),

=v(elp)h, | | (@,h,) (111.17)
i=1
shock with varying h,:  (u,),
=velp)n,h) [1a, I1, (I11.18)
i=1 i=1
i#k
and for two-component systems:
diffuse wave with varying k,:  (u,),
= v°(e/p)a,a,hih, (I1L.19)

diffuse wave with varying f,: (1),

=v°(e/pa,ah h

shock with varying h,:  (u,), = v°(e/p)a,a,h h|'h,
(111.20)

shock with varying h,:  (4,), = v°(€/p)a,a,h,hih}’

Moreover, there is a simple relationship between the
adjusted velocity (), of a composition in a coherent
wave with varying root 4, and the adjusted particle
velocities u; of the solutes at that composition:

for all j and k&

u, =), /ah, (IIL.21)

7.3. Sharpening behavior

A wave sharpens if its tail runs faster than its
head, and spreads if the opposite is true. As Egs.
(I11.17) or Egs. (II1.19) show, the wave velocity in a
diffuse coherent wave increases with the value of the
varying root. Accordingly, a simple inspection of the
values of that root suffices to determine the sharpen-
ing behavior. For a wave with varying root 4,:

it hl>h
if h<h.'

self sharpe.mng (111.22)
nonsharpening

Here, as before, primes and double primes refer to
the upstream and downstream sides of the wave,
respectively. For example, in any Riemann problem
[see pattern (II1.4)] the sharpening behavior of each
wave is immediately apparent from the root values of
the initial and entering fluids: The wave with varying
h, is a shock if h, is larger than k,°, and is diffuse if
the opposite is true.

7.4. Noncoherent waves

The calculation of the development of a noncoher-
ent diffuse wave requires numerical integration over
distance and time. This integration is much simpler
and faster with the roots instead of the concentrations
as dependent variables. This is because Eqs. (II1.17),
if read as the velocity at which a given value of the
root h, advances, is valid even if the wave is
noncoherent. The equation can be rearranged to [30]

(htom). = —h, |1 @) 0k, 137),  forallk
i=1

The variation of a root with time depends only on the
gradient of that root and the local values of all roots,
not on the gradients of the other roots, whereas the
change of a concentration with time depends on all
local concentration values and gradients. Moreover,
in interference of two coherent waves, a common
occurrence, all concentrations vary, but only two
roots do; as a result, the number of simultaneous
equations to be integrated is lower if roots rather
than concentrations are used as the dependent vari-
ables.
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7.5. Linear chromatography as limiting case

The mathematics in terms of the /; contains linear
chromatography as the limiting case of infinite
dilution or vanishing b, coefficients. If all b,c, terms
in Egs. (III.1) and Egs. (IIL.5) become vanishingly
small, the g; approach proportionality to the respec-
tive ¢; and all root values k; approach the reciprocals
of the respective a; coefficients:

qg,—>ac;, j=l..n

. ifall b,c, >0
h;—>1l/a; j=1,..n

Any coherent wave now is only a vanishingly small
variation of a root. Under these conditions, Egs.
(III.12) and Egs. (III.13) for the wave and shock
velocities, respectively, reduce to

o

W), Wa); > ifall b,c, >0

v
1+ (ple)g;/c;

o

(Uc)j,(UA)j-—) if all b,»C,»—)O

v

1+ (ple)g,/c;
and so become equal to the particle velocity, given
by Egs. (I.5), whose equivalence to the retention
equation Egs. (III.2) of linear chromatography was
shown earlier. Any concentration variation of a
solute then advances at the particle velocity of the
solute, unaffected by the presence and behavior of
other solutes.

While the 4, mathematics contains the equations
of linear chromatography as a limiting case, the
capacity-factor concept of linear chromatography
becomes useless in the nonlinear case. This is
because the &’ values, equal to (p/€)g;/c; by their
definition and needed for the calculation of retention
times or volumes, depend on the local concentrations
and cannot even be calculated until after the problem
at hand has been solved.

8. Langmuir sample cases

To demonstrate the application of the h-trans-
formation and the ease with which analytical solu-
tions can be obtained with it in many instances, this
section takes the reader step by step through the
calculation of three sample cases: a five-component

frontal analysis, a three-component separation by
displacement development, and a two-component
overload elution. The examples illustrate different
aspect of working with the transformation — patterns
originating from a single source, multiple interfer-
ences of shocks from different sources, and interfer-
ences involving diffuse waves — and are essentially
independent of one another. Any one, or all, may be
skipped without loss of continuity.

8.1. Frontal analysis

The effluent composition history of a five-com-
ponent frontal analysis will be calculated for con-
ditions as shown in Table 2. This is a straightforward
application of the h-transformation, not involving
any wave interferences. As a specific example, a case
with five solutes was chosen, but the procedure is
equally applicable to any larger or smaller number of
solutes. General equations for n solutes are given at
the end of this section, and for Riemann problems
other than frontal analysis in the next section.

8.1.1. Plateau compositions

With five components, there will be five waves
and four intermediate plateaus (see Section 5). As
shown in pattern (IIL.4) in Section 6, the plateau
compositions in terms of h, are given entirely by the
roots of the entering and initial fluid compositions,
h; and h°, respectively. All solutes are absent from
the column initially, so the five h° equal the
reciprocals of the five a; coefficients. The plateau
compositions in terms of roots thus are:

entering fluid:  h;, h;, h:, h, hg

plateau 2: Va,,  hy, hs, hy, hy

plateau 3: la,, lla, h, h,, hy (111.23)
plateau 4: lla,, la, lla,, h hy

plateau 5: lla,, lla, la, lla, bk

initial fluid: 1/a,, 1a,, l/a,, 1/a,, 1/ag

For the entering concentrations in Table 2, Egs.
(IIL.5) yields the following root values:

h| =0.06374, h,=0.12018, h} =0.20132, h,
=0.38061, .= 0.62749 (111.24)

(all in g cm ™). With these values and the a, values
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Table 2
Conditions of sample case of five-component frontal analysis
Column Length

Diameter

Volume

Void fraction

Sorbent Bulk density
Langmuir coefficients

Concentrations

Entering fluid

Volumetric flow-rate
Linear velocity

Operating conditions

L=10 cm

D=1cm
V=(m/4)LD*=7.854 cm’
€=0.38

p=11 g/cm3 column

a,=20cm* g~ ,=2mmol ' cm
a,=12 b,=1

a,=17 b,=0.5

a,=4 b,=02

a,=2 b;=0.1

3

¢,=1.0 mmol cm
c,=12
c,=0.8
c,=13
¢s=09

V=1 cm' min”'
v°=V/[e(m/4)D*]=3.351 cm min "'

in Table 2, Eqs. (III.6) with the root sets (II1.23)
gives the following solute concentrations:

c, C, [N c c

3 4 5
plateau 2: 0 2.042 0.939 1.396 0.928 mmol
em™
plateau 3: 0 0 2465 1.792 1.018
platean 4: 0 0 0 3.944 1.218
plateau S: 0 0 0 0 2.550

8.1.2. Wave velocities

As was shown in Section 3, all waves in frontal
analysis with Langmuir sorption equilibrium are
shocks. With the h,° equal to the 1/a, and the
resulting cancellations, Eqs. (IIL.18) gives the fol-
lowing expressions for the adjusted shock velocities:

wave 11 (uy), = v°(e/p)a,a,a,ash hyhihh,

wave 2:  (u,), = v(€/p)aa,ashyhyh b

wave 3:  (uy), = v°(e/p)aashih b,

wave 4: (u,), = v°(e/plashh.

wave 5:  (u,)s = v°(e/p)h, (111.25)

8.1.3. Emergence times
The times at which the various plateau com-
positions begin to emerge from the column can be

calculated from the velocities above. Plateau 5, first
to emerge, begins to do so when wave 5, the fastest,
exits the column; plateau 4, when wave 4 exits; and
so on; and the entering fluid, when wave 1 exits. The
adjusted emergence times are obtained by division of
the column length, L, by the adjusted wave veloci-
ties.

Usually, the volumetric flow-rate V instead of the
linear velocity v° is given. The latter is the volu-
metric rate divided by the cross-sectional void area,
so that v°¢ = (V/V)L. With this substitution and the
velocities in Eqs. (II1.25), the adjusted emergence
times turn out to be:

plateau 5: (1), = (V/V)(p/h}) = 13:46 min
plateau 4: (1), = (V/V)(p/ash,hs) = 18:52 min
plateau 3: (1), = (V/V)(pla,ash;h,hs) = 22:28 min

plateau 2: (1), = (V/V ) plasa,ashihihihy)
=26:42 min

entering fluid: (1), = (V/V)(pla,a,a,ash hihihihs)
= 34:54 min

All real emergence times (¢), are longer by the time
span L/v°=€V/V it takes to displace one column
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void (see Eqgs. (IIL.16)). With the data in Table 2 that
time span is 2:59 min.

This completes the calculation. The resulting
effluent history is plotted in Fig. 7.

8.1.4. General equations for frontal analysis
For n-component frontal analysis in general the
root sets of the plateaus are:

plateau k:
h,=1/a, fori<k
h,=h] fori=k (I11.26)
k=1,..n+1

(indices: 1=entering fluid; n+ 1 =initial fluid). The
concentrations in the plateaus are given by Egs.

(II1.6) with these root values, and the adjusted
emergence times are

n n —1
(r)k=(V/V)p[1:[Ha,il;]kh,]

(I11.27)

Thus, all quantities of interest are easily calculated
from the roots h; of the entering fluid, the g,
coefficients, and the operating data (sorbent bulk
density, column volume, and flow-rate).

8.2. General equations for Riemann problems

The equations for frontal analysis are readily
generalized for any Riemann problem (uniform
initial and constant entry conditions, but without
restrictions as to the presence or absence of solutes
anywhere). This requires the replacement of the 1/a;

Fig. 7. Frontal analysis: effluent history under conditions in Table
2.

in Egs. (I11.26) by the roots of the initial fluid, A,°.
The concentrations in the plateaus then are again
given by Egs. (II1.6). In Eqs. (II1.27) for the adjusted
emergence times, no or not all 4,° cancel against a; .
Also, some or all waves may be nonsharpening.
Thus, for shocks:

n ky

-1
(7), = (V/V)p[hk° IJI allne I]k h,.’]

i
i=1

3

for all waves with h, > h,° (111.28)

For compositions within nonsharpening waves, to
which Eqs. (II1.17) instead of Eqs. (III.19) applies,
the adjusted time at which the value of the varying
root in the effluent has reached A, is given by

n kg n -1
7, = (V/V)p[hz l:ll a, 1:11 h° ':lk_[+| h| ]
for all waves with h, <h,° (I11.29)
8.3. Displacement development®

The column length and time of operation required
for complete resolution of a three-component mix-
ture by fully effective displacement development and
the concentrations in the emerging bands will be
determined. The conditions are given in Table 3.
Apart from being of interest for displacement de-
velopment, the example demonstrates how, more
generally, multiple wave interferences can be hand-
led.

Displacement development has been discussed in
detail in Parts I and II (see Sections 1.13 and I1.9). A
mixture containing the solutes to be separated is
charged for a finite time to a column initially free of
sorbates and is then displaced with a solute having a
higher affinity for the sorbent than do the com-
ponents of the mixture (see Fig. 8). The start of
injection of the mixture generates a set of response
waves as in frontal analysis. All these waves accord-
ingly are shocks. The switch to injection of the
developer generates a second set of waves. If dis-
placement is fully effective, these waves also are
shocks. The shocks of the two sets interfere, causing
the solutes of the mixture to sort themselves out into

*See also work by Rhee and Amundson {31} and Frenz and
Horvath [32].
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Table 3

Conditions of sample case of three-component displacement development

Column Diameter
Void fraction

Sorbent Bulk density
Langmuir coefficients

Mixture Concentrations
Amount
Injection time

Displacer Concentration

Operating conditions Volumetric flow-rate
Linear velocity

D=5 cm
€=0.38

p=10 g/cm® column

a,=8cm’ g™ b,=1.6 mmol™' cm’

a,=5 b,=1

a,=2.5 b,=05

a,=15 b,=03

¢, =038 c,=1.0 ¢,=1.2 mmol cm™*
V™=600 cm’

Ar=v"™/V=40 min
¢,=5.0 mmol cm ™

V=15 cm’ min~'
v°=V/[e(w/4)D’}=2.010 cm min "'

individual bands that eventually travel all at the same
velocity, close-up, separated only by shocks. While
the final pattern is easy to determine, the resolution
distances and times can only be found by a calcula-
tion of the transient behavior.

A good way to start working on a problem with
multiple interferences of waves is to lay out the
topology of the wave pattern in distance and time, to
have a clear picture of which waves interfere with
which others. It may not be known at the outset
which waves are self-sharpening and which are
nonsharpening, and which solutes are present in or
absent from which plateaus between the waves, but
the topology of the pattern often is nevertheless
unambiguous. If there are several possibilities, the

mixture displacer displacer
(solutes 2, 3, 4) (solute 1)
mixture displacer
solute 2
column sohe 3
solute 4

att=0 att= At after
resolution

Fig. 8. Displacement development: operating procedure (for three-
component separation, schematic).

correct choice becomes apparent once an early
portion of the pattern has been calculated.

A topology diagram is compiled step by step,
starting with the waves originating at the column
inlet, establishing their interferences, then identifying
the new waves arising from them, establishing the
interferences of those waves, and so on. For the case
at hand, Fig. 9 shows such a construction step by
step. Waves will be called for short “h, wave,” “h,
wave,”’ etc., indicating which root varies across. In
the topology diagram the index of the respective
varying root is shown in a circle.

Step 1

The distance and time axes are laid out, for
convenience not at right angles to avoid crowding in
the area of large distance and long time. On the time
axis, the times of start of injection of mixture and
displacer are marked as points A and B, respectively.
The start of injection of the mixture (solutes 2, 3, and
4) at time t=0 (point A) produces three shocks with
varying roots h,, k5, and h, (slowest to fastest wave).
The switch to injection of the displacer (solute 1) at
time t=At (point B), involving all four solutes,
produces four waves with varying &, h,, h,, and h,
(slowest to fastest), whose sharpening behavior
remains to be ascertained. Although their actual
trajectories in the distance—time plane are straight,
the waves are shown as curves in a way that leaves
enough room for entries identifying the plateau zones
between the waves and stating their compositions.

The first interference is that of the fastest wave of
the second set with the slowest of the first, that is, of
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step 2

Va2 1/as Ve Ko

Fig. 9. Displacement development: step-by-step construction of wave topology in three-component separation. A, B,...=locations of wave
interferences; a, B,...=designations of plateaus; numbers in circles =indices of varying roots; numbers in square boxes = solutes present in

plateaus; root sets shown in plateaus.

the h, wave of the former with the 4, wave of the
latter. This point is marked C.

For identification, the various plateaus separated
by the waves are named and their names are entered
in the diagram: Downstream of the k, wave origina-
ting from A the column is still in its initial com-
position, ‘‘in”’. Between the h, wave from A and the
h, wave from B, the composition is that of the

injected mixture, “mix”. Upstream of the h, wave
from B is the displacer, ‘‘dis”. The other plateaus
between the waves are given Greek letters a to ¢, left
to right.

Step 2

At point C, the interference of an s, wave and an
h, wave produces two new waves: an h, and an h,
wave, the former faster than the latter. These two
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give rise to two new interferences: of the h, wave
from C with the &, wave from A, and of the h, wave
from C with the h, wave from B. (Note that waves
with higher index of the varying root are faster, see
Egs. (II1.12) and Egs. (III.13).) The trajectories of
the two new waves are added, the platcau between
the new waves is named {, and the respective points
of the new interferences are marked D and E.

Step 3

Interference of the h, wave from C with the 4,
wave from A, at D, produces two new waves: an h,
and an h; wave. Similarly, interference of the £,
wave from C with the h, wave from B, at E,
produces a new h, and a new h, wave. Their
trajectories are entered as curves, and the plateaus
between them are named m and 6.

The next possible interferences are those of the
two h, waves from A and D, of the two h; waves
from D and E, and of the two h, waves from E and
B, each involving two waves with the same varying
root. A plateau between two coherent waves with
same varying root (same affinity cut) shrinks if either
or both waves are shocks (see Section 4). In the case
at hand they all do because all waves originating
from point A are frontal analysis waves and therefore
are shocks. [Note a variation of a root, increasing or
decreasing in the direction of flow, retains its shar-
pening behavior when its trajectory crosses that of a
variation of another root; see criterion (II1.22).] The
three points of merger of waves are marked F, G,
and H, and the trajectories of the resulting three new
waves are drawn in. The wave pattern is now
complete.

Step 4

The compositions of the plateaus of the initial
fluid, mixture, and displacer in terms of roots are
now established as follows. Without calculation,
values can be assigned to all roots of the initial fluid
(no solutes) and the first root of the mixture (solute 1
absent) because roots must equal reciprocal a; co-
efficients of absent solutes and condition (II1.10)
allows no root other than 4, to assume the value
V/a,:

initial fluid: h=1/a,, h,=1/a,,
h,=1/a,, h,=1la,
(I11.30)
mixture: h,=1/a,, h,=h",
hy :h(sm)- hy=h"

where the still unknown other three roots of the
mixture are written &".

For the displacer, three root values must equal the
reciprocals of the a, values of the absent solutes 2, 3,
and 4. However, since condition (II1.10) allows any
1/a; other than 1/«; to be either h; or k,_,, the root
indices cannot be assigned until the value of the
fourth root has been calculated. Here, Egs. (IIL.9)
with ¢, a,, and b, from Table 3 gives a value larger
than 1/a, (see Eq. (II1.32) farther below), which
must therefore be assigned to A,. Accordingly, with
this value written as hf{”,

displacer: h, =1/a,, h,=1/a,,

h,=1la,, h,=h (IIL31)
The root sets for the initial fluid, mixture and
displacer are now entered into the respective zones
of the diagram.

Step 5

The compositions of the other plateaus in terms of
the roots of the initial, mixture, and displacer com-
positions as given by Eqgs. (1I1.30) and (II1.31) can
now be established by an examination of which root
varies across which wave, in the same fashion as
pattern (III.4) in Section 6 was deduced. For exam-
ple, going from the displacer to the mixture, 4, must
vary from 1/a, to h" and can do so only across the
h, wave between plateaus € and 8; accordingly, it
must equal 1/a, in plateau €, and h(zm) in both
plateaus & and vy. The root sets of all plateaus are
entered into the diagram.

Since a solute k is absent if a root equals 1/q,, it
can now be seen which solutes are present in which
plateaus:

initial fluid: contains no solutes

mixture: contains solutes 2, 3, and 4
displacer: contains solute 1

plateau o contains solute 4

plateau f3: contains solutes 3 and 4
plateau v: contains solutes 2, 3, and 4
plateau d: contains solutes 2 and 3
plateau e: contains solute 2

plateau {: contains solutes 3 and 4
plateau m: contains solute 4

plateau 6: contains solute 3
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The solutes in the respective plateaus are entered
into the diagram, shown in square boxes.

The construction of the topology diagram is now
complete. The detailed and lengthy description might
make things seem complicated. However, having
gone through this exercise once, the reader will find
the procedure fast and easy to apply to any new
situation.

Equations for the wave velocity can now be
established as follows. Since condition (II1.10) re-
quires 1/a,<h™<1/a,,, and since h">h{™, it
can now also be seen that all waves are shocks
because in each case the value of the varying root
decreases in the direction of flow [see criterion
(I11.22)]. The velocities are given by Eqgs. (IIL.18),
which requires the root sets of the plateaus on the
upstream and downstream sides of the respective
shock (note that only one root varies across each
shock). The resulting equations are listed in the third
column of Table 4. As the entries show, the veloci-
ties of the four final shocks, originating from points
F, G, H, and B, are given by identical equations; this
confirms that a final constant pattern traveling with-
out further change is eventually attained.

The calculation of real concentrations and veloci-
ties requires, in addition to the g,, numerical values

Table 4

of " and the A\™. With Egs. (I11.9) for the former
and Egs. (IIL5) for the latter, the data in Table 3
yield:

mixture: hy™ =0.25418, =
0.50312,
R =1.1094 gem™? (I11.32)
displacer: h,=1.125

The adjusted shock velocities calculated with these
values and the a, from Table 3 are listed in the last
column of Table 4. The concentrations in the various
plateaus could easily be calculated with Eqgs. (III.6)
from the root sets in Fig. 9 with the root and g,
values from Eq. (I11.32) and Table 3. However, for a
calculation of the resolution distances this is not
necessary. The only concentrations of interest are
those in the single-component bands emerging from
the column after complete resolution (plateaus o, m,
0, and €). These turn out to be:

plateau o ¢,=2.21 mmol cm
plateau 6: ¢,=3.63 mmol cm >
plateau m: c,=2.29
plateau e: c, =4.63

[All but that of solute 4 in plateau o could instead

Shock velocities in sample case of three-component displacement development

Shock between Varying Adjusted shock velocity®

Plateau Plateau root u,

upstrcam downstream

o Initial h, v(elp)h™ =0.8457 cm min "'
B o h, v(elpa R =0.6396
Mixture B h, v(e/p)a,a,hyh Ry =0.4064
¥ Mixture h, v(elp)aya.a,hy h R =2.2862
3 Y h, v(e/plaahi"h{h" =1.3738
€ 3 h, vo(elp)a,hy Y =1.0923
Displacer € h, v°(e/p)hy =0.8594
e B h, vo(elpa,ahh R =1.7989
v L h, vo(elpa,a hih R =0.4122
n a h, ve(elp)a hihY =1.4302
L m h, v°(e/p)ahihLY =0.6486
i) e h, v°(e/pya hi™hL" =1.0810
3 9 h, v°(elpya hi™hL" =0.5461
M Initial h, v°(elp)hy’ =0.8594
0 n h, v(elpyh’ =0.8594
€ ] h, v°(elp)hy =0.8594

* In the calculation of resolution distances for given volume of mixture, the factor v°¢ cancels and need not be carried. It is retained here for

clarity.
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have been obtained with a Tiselius construction (see
Sections 1.13 and I1.7)].

All data needed for the calculation of the res-
olution distances are now at hand. Inspection of the
topology diagram in Fig. 9 with attention to which
solutes are present where shows that the farthest
distance solutes 2 and 3 travel together is to point H,
where plateau d ends. Accordingly, z,, is the distance
needed for resolution of these two solutes. Similarly,
the farthest distance solutes 3 and 4 travel together is
to point G, the end of plateau {, making z; the
resolution distance of those two solutions. Only
calculation of both can show which of the two
distances is the longer one. Also of interest might be
Zp, the distance needed to consolidate solute 4 into
one band (plateau m) at its higher concentration.
Closed-form algebraic equations for all interference
and resolution distances and times in terms of the
roots and a; coefficients can be derived, but are
lengthy for mixtures of more than two components.
Unless problems of exactly the same nature — same
number of components, same sharpening behavior of
all waves — recur repeatedly, a step-by-step approach
is more practical. That method, employed here,
consists of calculating time and distance coordinates
of interference points from those of previous points
in the pattern and the velocities of the interfering
waves and repeating the procedure for points farther
out [33]. With reference to Fig. 10, the 7 and z
coordinates of a point * at which waves from points
x and y and with adjusted velocities u, and u,
interfere is given by the ‘“‘triangle formula™ '

distance

0

o adjusted time

Fig. 10. Basis of triangle formula (III.33): trajectories of two
shocks with different origins z,, 7, and z,, 7,, interfering at z*, 7*.

. , 7%, + TU, — TU,
T = ,
u, —u,

=z, + (@ — 1 )u,
or (I11.33)

¥ = Zy + (T* - 7Tv)u‘\.'

For example, for point C, at which waves from A
and B interfere, the input is

Z,\'=ZA=0’
7.=75=0,

= - il
U, = (Up) pixsp = 04064 cm min
7,775 =0,

7,= 13 = At =40 min

U, =(Uy)yymix =2.2862 cm min '

Using Eqgs. (I11.33) and the velocities from Table 4
one obtains

(uA )y—-)mlet

(uA)'y—)mix - (“A)mix—>B

Tc = 48.64 min,

ic= Tc(uA)mix—>|3 =19.77 cm

With the 7 and z coordinates of point C established,
those of point D are calculated from those of points
A and C; those of E from those of C and B; and so
on. With the triangle Egs. (II1.33) programmed, this
can be done in little time even with only a pocket
calculator. In the case at hand, the distances of
interest turn out to be:

resolution 3/4 consolidation of 4
g=56.1cm, z;=67.2cm

resolution 2/3
2y =279 cm,

Lastly, the time of operation required is the time it
takes for the last wave of the pattern to emerge. That
is the wave with which the displacer displaces
plateau €, originating at point B (z=0, 7=At). The
respective adjusted wave velocity from Table 4 gives

tena = Tena T LIV = L(1/(uy) gigp e + 1/0°)
/4)LD?
@Iy 3 (ﬁ + e) (I11.34)
4



F.G. Helfferich | J. Chromatogr. A 768 (1997) 169-205 193

With the data in Table 3 and for a column of 60 cm
length, the real time is found to be 99:40 min.
This completes the calculation. The quantitative
distance—adjusted time diagram is shown in Fig. 11.
Beyond giving results for a specific case, the
calculation sheds light on the function of the dis-
placer. How the displacer acts depends on the value
of its only root, 2’ In the calculated example, that
root was larger than the largest of the mixture,
making displacement completely effective with all
waves being shocks. If 1/a, <h'“ <h{™, the h, wave
from B via C and D to F is nonsharpening and its
merger with the h, shock from A extends over some
distance and time, eventually resulting in a single
shock; also, the concentration of solute 4 then is
higher in plateau « than in the final band n (behavior
as in Fig. 21 of Part II). If 1/a,<h'"<1/a,, solute
4 is absent from plateaus vy, {, and m, and a pulse of
solute 4 “runs away” from the displacement pattern,
losing its flat top when the nonsharpening h, wave
from B merges with the h, shock from A at point F
(behavior as in Fig. 24 of Part II). Similarly, if
1/a,<h'<1/a,, solute 4 behaves in the same way
but, in addition, solute 3 is absent from plateaus &
and 6 and forms another run-away pulse that loses its
flat top at point G. Lastly, if 1/a,<h'Y<1/a,,
solute 2 in addition is absent from plateau €, and all
three solutes now travel as pulses while the displacer
remains entirely ineffective. These considerations
show that the quality of a displacer can be judged by
its root according to Eqgs. (I11.9), a large value being
desirable. Too high an affinity of the displacer for

distance, z

adjusted time, ©

Fig. 11. Displacement development: distance-adjusted time dia-
gram for three-component separation under conditions in Table 3.

the sorbent (high value of its a, coefficient) is seen
not to be desirable: It will make the displacer slow,
perhaps slower than the solutes of the mixture and so
letting them run away. The a, coefficient of the
displacer must be larger than those of the com-
ponents of the mixture for displacement development
to be possible at all, and should be reasonably larger
than a, to ensure good sharpness of the shock layer
with which solute 2 is displaced, but an affinity
exceeding these requirements is detrimental.

8.4. Elution from an overloaded column’

The column response in ¢lution of a two-com-
ponent mixture from a column under conditions of
concentration and volume overload will be calcu-
lated. Simple algebraic equations in terms of the
roots of the mixture cover the entire behavior, with
the sole exception of the shock front of the pulse of
the solute of lower affinity after that pulse has lost its
flat top. The conditions are listed in Table 5. General
equations for emergence times of waves are given at
the end of the section. This example illustrates the
application of the transformation in a situation in
which interference involves a diffuse wave.

Elution of a binary mixture under overload con-
ditions has been discussed in detail in Part II (see
Section I1.9). A fairly concentrated mixture is
charged for a finite time to a column initially free of
solutes, and is then developed with pure solvent (or
carrier gas). The start of injection of the mixture and
the switch to solvent each generate a set of coherent
response waves. With only two solutes as considered
here, each of these sets consists of two waves, one
each with varying A, and h,. Until injection is
switched, conditions are as in frontal analysis, so
both response waves of the first set are shocks. The
switch from mixture to solvent entails the opposite
composition variation, so both its response waves are
nonsharpening. If the column is long enough, the
faster wave of the second set will catch up and
interfere with the slower wave of the first. Still
farther downstream, the two fast waves will merge,
and so will the two slow ones.

See also work by Rhee et al. [5,6] and Golshan-Shirazi and
Guiochon [34].
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Conditions of sample case of two-component elution under conditions of concentration and volume overload

Table 5
Column Diameter
Void fraction
Sorbent Bulk density
Langmuir coefficients
Mixture Concentrations
Amount

Injection time

Volumetric flow-rate
Linear velocity

Operating conditions

D=1 cm
€=0.38

p=1.1 g/cm’ column

a,=4 cm’ g" b,=0.50 mmol ' cm’
a,=2 b,=0.25

¢, =050
v™=2cm’
Ar=V'™/V=2 min

¢,=0.48 mmol cm™’

V=1cm' min~’
v°=V/[e(w/4)D}=3.3506 cm min '

As in the previous example, a good way to start is
to lay out the topology of the wave pattern in
distance and time (see Fig. 12). Both sets of waves
are generated at the column inlet (z=0), the first at
point A (t=0) with beginning injection of the
mixture, the second at point B (#=Ar) with the
switch to injection of solvent as eluent. In Fig. 12 the
spreading nonsharpening waves are shaded and the
indices of the varying roots of the four waves are
shown in circles. The first interference occurs when
the leading edge of the faster wave of the second set
(a nonsharpening h, wave) catches up with the
slower wave of the first (an &, shock). The distance—
time point where this happens is marked C’. Since
one of the two waves is diffuse, interference extends
over a finite distance and time span, in this case
along a distance—time curve from C’ to C", where
interference is complete. Later, the two h, waves
from A and C'—C” merge at D, and so do the two A,

Y

1/as 1/az

initial
fluid
1ar t/az 6

eluent

1/as t/az

time

Fig. 12. Overload elution: topology of wave pattern of two-
component case. Diffuse waves shown shaded; «, B.... = plateaus;
numbers in circles =indices of varying roots; sets of roots shown
in plateaus.

waves from B and C" at E. The mergers do occur
because in each case one wave is a shock, so that the
plateau between them shrinks (see Section 4).

8.4.1. Plateau compositions

In terms of roots, the compositions of all plateaus
can be written down immediately. Writing 2™ for
the roots of the mixture composition:

mixture:

II1.35
hy=h"™,  h,=h" ( )
The roots of the initial fluid and of the eluent, both
free of solutes, are

initial fluid and eluent:

11.36
h,°=1/a,, h,’=1/a, ( )

Across the slower wave of the first set, 4, remains at
h{™, its value in the mixture, while 4, varies and
must do so all the way from 4™ to 1/a, because is
cannot vary across the faster wave. Thus, the roots of
plateau a between the waves of the first set are

hy, = hy" (111.37)

plateau a: h,=1/a,,

Because one root equals 1/a,, solute 1 is absent.
Similarly, across the slower wave of the second set,
h, remains 1/a,, only h, varies and does so all the
way from 1/a, to h‘l"'), its value in the mixture,
making the root set of plateau 3 between these
waves

h, =h{", (IIL.38)

plateau f3: h,=1/a,

Because one root equals 1/a,, solute 2 is absent. In
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the new plateau -y that develops after wave interfer-
ence is complete, A, must be the same as in plateau
a, and h, the same as in plateau (3. Thus:

plateau vy: h,=1/a,, h, =1/a, (111.39)

showing that both solutes are absent. Plateaus o and
[ are seen to be flat tops of pulses of pure solutes 2
and 1, respectively, both with shock fronts and
nonsharpening tails. The pulses lose their flat tops at
the distance—time points marked D and E, respec-
tively, where the leading edges of the nonsharpening
waves catch up with the shocks.

For the composition of the injected mixture given
in Table 5, Egs. (IIL.7) yields

A =0.298842, gem ™
(111.40)
hS™ = 0.569908

With these values, Eqgs. (II1.9) gives:

¢, =(a,h™ = 1)/b,=0.559 mmol cm
¢, =(a,h"™ —1)/b, =0.391 mmol cm "’

plateau o:
plateau [3:

These are the concentrations of the flat tops.

8.4.2. Wave velocities

Explicit equations for the various adjusted wave
velocities in terms of the a, coefficients and the roots
of the mixture composition are obtained from Eqgs.
(II1.19) and Egs. (II1.20) with use of the respective
root sets in Egs. (HI.35) to (I11.39). For the two
shocks from point A:

(uA)mix—mx = UO(E/p)aZh(lm)h'Zm)’
(111.41)
(uA )u‘»ini( = Uo(e/p)h;m)

and for the compositions within the two nonsharpen-
ing waves from point B:

(U)o = V(elp)a, h?,
(111.42)
(u(-)Bﬁmix = Uo(flp)alazh(lm)hi

(Subscripts mix—a etc. state the plateaus upstream
and downstream of the respective wave, with the
arrow pointing from the former to the latter.)

Also of interest are the adjusted velocities of the
slowest and fastest compositions of the nonsharpen-

ing waves, that is, the compositions in which the
varying root still or already has the same value as in
the adjacent plateau. With the roots of the plateaus as
seen in Fig. 12:

U )asp = V(elp)(1/a,)
(ut-);l,aﬁ = UO(E/p)a|(h(|m) )2

(111.43)
(u(')lgamix = vo(flp)(a[ /az)h(lm)

(u(i)é;mix = vo(f/p)alazh‘lm'(h(zm))z

where primes and double primes refer to the slowest
and fastest compositions (trailing edge and leading
edge of the wave), respectively.

In the same way the adjusted velocities of the &,
shock and the nonsharpening /i, wave after their
interference can be obtained:

(3)g,, = (/P

(u( )y—m = UO(G/P)GZhg

(111.44)

(u v°(elp)(l/a,)

¢ )';%(x =
W)} 0 = V(e/payhy™ )’

8.4.3. Times and distances of interference

The adjusted-time and distance coordinates of
point C', where interference begins, are established
with the triangle formula Egs. (II1.33) from those of
A and B and the velocities () ix_o a0d ()5, mi
in Egs. (1IL.41) and Eqs. (II1.43). The coordinates of
C” can be found by integration along the shock
trajectory from C' to C” '°. The coordinates of D and
E, where the flat tops of the pulses of solutes 2 and 1
end, can then again be calculated with the triangle
formula from those of A, C’, B, and C" and the

o 1y 1
velocities (i), ins U )y sor (Ha)g oy, aDd ()0

""An explicit analytical solution for interference of a shock with a

diffuse nonsharpening wave can be obtained if the latter is
‘self-centered*, that is, if the trajectories of its compositions all
originate from one and the same distance—time point or can be
linearly extrapolated to such a point. This makes it possible to
give an analytical solution for attenuation of the pulse of solute
1 after disappearance of its flat top at E [35]. However, the
nonsharpening h, wave is no longer self-centered after interfer-
ence along C'—C” and, therefore, the trajectory of the shock
front of the pulse of solute 2 from D on out must be found by
numerical integration.
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from Eqgs. (II1.41), Egs. (II1.43) and Eqs. (I11.44).

The coordinates are

K™ At i

T = " o = 3:34 min,
hy," —1/a,

icr T (uA)mix—buTC’ =141 cm,

Ter =(1 +

_ '
e = U

cB—omix

a,w™ - 1/a,)
(1/a,— 1/a,)

)At = 4:34 min,

(Te» — Ar)=1.77 cm,

RV (™ — h™)A ,
™= " o 7 = 13:49 min,
B = a )™ = 1/a,)

Zp = (W) gy =9.11 cm,
1a,(hy" — 1/
== 1+ ]( 2 (m)al)
(l/ay —1/a))h," — 1/a))
= 15:06 min,

ze = ) a(r — A1) =542 cm (111.45)

Note that z.. is the column length required for
complete resolution of solutes 1 and 2. The quantita-
tive distance-adjusted time diagram is shown in Fig.
13.

8.4.4. General equations for emergence times and
construction of effluent histories
General equations for the adjusted emergence

0 10 20
time (min)

Fig. 13. Overload elution: distance-adjusted time diagram for
two-component case under conditions in Table 5.

times of the shocks and compositions within the
nonsharpening waves are listed in Table 6. They can
be used for compilation of effluent concentration
histories of columns of given lengths, L. A good way
to proceed is first to establish in which sequence the
waves and plateaus emerge from the column. This is
done by comparing the column length to the interfer-
ence distances z.., Zo., Zp, and zg . The adjusted
emergence times of the waves are then calculated
with the equations in Table 6. Finally, the root sets
of any plateaus or pulse apexes are transformed into
concentrations with Eqs. (IIL8). In this way, the
entire pattern can be calculated with simple algebraic
equations. The only exception is the shock front of
the pulse of solute 1 after disappearance of its flat
top at point D; here, numerical integration is re-
quired.

Compilation of the effluent history for a column of
7 cm length under the conditions listed in Table 5
may illustrate the procedure. A comparison with the
interference distances shows the column to be shorter
than zp, but longer than z.. and z;. Accordingly, the
two pulses are resolved and the flat top of solute 1
has disappeared, but that of solute 2 has not. Thus,
the sequence of emergence is: initial fluid/A, shock
(front of pulse of solute 2)/plateau o (flat top of that
pulse)/h, wave (diffuse rear of that pulse)/plateau y
(no solutes)/h, shock (front of pulse of solute 1)/k,
wave (diffuse rear of that pulse). The calculation of
the adjusted emergence times and concentrations
yields:

front of 1" pulse {hy shock before merger)  10:34 min [Eq. (111.46))

fiat top of 1™ pulse (plateau a) ¢,=0559 M [Eq. H1.8 with h, =1/ay, ky=h3"|
rear of 1™ pulse (h, wave after interference) front 11:00 min (Eq. (IIL53) with h2=h(2"')]

rear 13:36 min [Eq. (LIL.S3) with h;=1/a;]

interval (plateau y) no solutes
front of 2" pulse (4, shock after  merger) 19:44 min [Eq. (TIL50)]
¢, =0336 M [Eqs. (IIL51) and (L11.8)]
rear 26:11 min [Eq. (II1.54) with k) =1/a,]

apex of 2" pulse
rear of 2" pulse (h, wave)

(The emergence time of the front of the second
pulse is also that of the apex.) In addition, a few
intermediate concentrations within the two diffuse
waves should be chosen and converted to roots with
Eq. IIL.9 for calculation of their adjusted emergence
times with Eqs. (IIL.53) and (II1.54). All real emer-
gence times are longer by L/v°=2:03 min. The
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1.07
0.81
c
S 061 solute 2
4
€
§ 0.4 solute 1
8
0.21
0.0 T d )
0 10 20 30
adjusted time

Fig. 14. Overload elution: effluent history of column of 7 cm
length under conditions in Table 5.

complete effluent composition history is plotted in
Fig. 14.

If the column length is such that interference
remains incomplete (that is, if z..<L<z..), the
emergence time of the A, shock is needed to
determine which equation for the emergence times of
roots of the nonsharpening wave must be used in
which time range. The sequence of emergence from
such a column is: initial fluid/h, shock/plateau o/
early portion of &, wave/h, shock/late portion of A,
wave/plateau 3/h, wave/eluent. As Fig. 15 illus-
trates, the early portion of the h, wave, emerging
ahead of the A, shock, has already interfered with it

-

distance, z

time, t

Fig. 15. Overload elution: distance—time representation of waves
emerging from column while interfering (schematic). Not realized
trajectories beyond column length (L) are shown as dashed lines.

in the column; the late portion, emerging behind the
shock, has not''.

9. Summary and assessment

Section 4 has presented an extensive set of rules
and regularities for systems with Langmuir and
Langmuir-like sorption equilibria as defined in Sec-
tion 2. Perhaps the most general and useful of the
rules is the existence of so-called affinity cuts of
coherent waves, presenting an easily remembered
picture of what kind of composition variations may
and may not occur across coherent waves, and of the
sequence of coherent waves in patterns arising from
one original source. Section 5 then has demonstrated
the application of the rules to a practical situation —
multicomponent frontal analysis — and has shown
that in such relatively simple cases all qualitative
features of the response pattern can be predicted
from the rules alone, without any calculations. The
rules are based solely on the assumptions of ideal
chromatography, coherent behavior, and Langmuir-
like sorption equilibrium; the Langmuir equations
themselves need not be valid. Moreover, the tech-
nique of deducing details of chromatographic be-
havior from an examination of particle velocities and
wave velocities is general and can be applied equally
well to systems with any other kinds of sorption
equilibria.

The subsequent sections have laid out a mathe-
matical transformation of the concentration variables
with which the mathematics of Langmuir systems
can be greatly simplified. Three sample cases have
been calculated step by step to illustrate different
facets of the practical application of the transforma-

"Details of the derivations have been given by Helfferich and
Klein [35]. The equations in that source are for the mathemati-
cally equivalent case of ternary ion exchange, operate with
normalizations, and are more general in that they cover injection
of a square-wave pulse into any constant background that may
also contain the solutes. The situation corresponding to overload
elution and positive b, coefficients is Case 2. To recover the
equations needed here, make the following substitutions: 4™ for
h?°, lla, for h!, 1/a,a, for a, and z/[v°(e/p)] for z. Also, the
first Eq. A.93 contains an error: in the numerator of the factor in
parentheses, Y™ should be replaced by 4\™.
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tion: wave patterns originating from a single starting
variation, multiple interferences of shocks origina-
ting from several starting variations, and interference
involving a diffuse wave. The examples have shown
that, for many problems of practical interest, com-
plete or nearly complete solutions can be obtained in
the form of algebraic equations that can be evaluated
by hand. Perhaps only a preparative-chromatography
old-timer can appreciate the quantum leap of mathe-
matical streamlining achieved. To mention but one
example: The transformation allows resolution dis-
tances in effective displacement development of
mixtures of a dozen or more components to be
calculated in a short time on a pocket calculator
equipped with a root finder. Although that separation
technique had played a key role in the isolation of
fission products and new elements as an outgrowth
of the Manhattan Project of World War Two [36,37],
it was developed empirically and the mathematics of
its transients had taken until 1968 to progress to just
three components [38]. The transformation was
introduced into chromatography in the 1960s, and in
retrospect one might regret that it has seen so little
use through an age in which computers were not
nearly as powerful and accessible as they are today,
so that numerical computation of cases with more
than only a few components was laborious and
expensive. No doubt, the reason has been that
publications describing the transformation have ad-
dressed the theoretician rather than the practitioner,
and so have been more often quoted than read.
Therefore, the effort has been made here to make the
transformation more ‘‘user-friendly” and demon-
strate the ease with which it can be handled even by
someone who, like myself, is no friend of higher
mathematics.

In competition with today’s computer software for
multicomponent non-linear chromatography, wave
theory as presented here has the disadvantage of
yielding results for the ideal case — without mass-
transfer limitations, nonuniform volumetric flow-rate,
flow irregularities, etc., for which corrections must
be applied. The h-transformation is in addition
restricted to Langmuir sorption equilibria. Therefore,
usually, ideal wave theory cannot give answers
accurate enough for design or optimization, and so
cannot replace numerical computation. Rather, it

supplements it by providing a deeper understanding
of chromatographic mechanisms and their physical
causes, by teaching what kind of phenomena to
expect under what conditions. This is true even for
the h-transformation. The value of wave theory is
greatest in the conceptual stage of development when
creative new ideas are sought, countless options still
are open, wide ranges of conditions are to be
screened, and an approximate answer will do. Here,
the computation of specific cases with elaborate
software is inefficient compared with the insight
wave theory can provide.

10. Glossary of symbols and terms

a, coefficient in Langmuir isotherm equation
(Egs. (IIL1)) (cm® g™ "

b, coefficient in Langmuir isotherm equation
(Egs. (IIL.1)) (mmol ™' cm?)

c ={c,,...,¢,}, composition of moving phase
(mmol cm )

c, concentration of solute i in moving phase
(per unit volume of moving phase) (mmol
cm )

C, =¢c,+pgq,, blind-man’s concentration of

solute i (total amount per unit volume of
column) (Appendix A) (mmol cm )

D internal diameter of column (cm)

h, ith root of Eq. (IIL.5) or (I11.7), transformed
composition variable (Section 5 and Section
6) (g cm™’)

k' =(ple)gq,/c;, capacity factor in linear chro-
matography (Section 3) (dimensionless)

L column length (bed length in column) (cm)

q sorbent loading with solute i: amount of i in
sorbent (averaged over bead) per
unit weight of sorbate-free sorbent (mmol
gh

t time (s)

e retention time in linear chromatography
(Section 3) (s)

t, deadtime in linear chromatography (Section
3) (s

u adjusted particle velocity of solute j (Sec-

tion 6) cm s~ ')
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(u.),  adjusted coherent velocity of composition in (Uy), linear velocity of coherent shock with high

wave with high key & (varying root h,) key k (varying root h,) (cm s

(Section 6) (cm s~ ") Vv column volume (cm*)
v° linear velocity of moving-phase flow (cm 1% volumetric flow-rate (cm” s~ ')

s v volume of solute mixture to be separated
v, =(dz/0t),, linear coherent velocity (eigen- (cm’)

velocity) of composition {c,,....c,} in 2z column position (linear distance from inlet

coherent wave (Section 3 and Section 4) end of bed) (cm)

(cm s~ 4 distance coordinate of distance—time point J
), linear coherent velocity of composition in (cm)

ave with high key k (varying root ;) (cm A finite difference across shock (operator)

s_]) € fractional volume of moving phase in col-
v, =(dz/or),;, linear wave velocity of con- umn (dimensionless)

centration ¢; (Eq. (1.4) in Section 3) (cm p bulk density of sorbent: weight of sorbate-

s free sorbent per unit volume of column (g
Uy linear wave velocity of coherent shock cm”®

(Section 3) (cm s~ ") T =¢—z/v°, adjusted time (Egs. (III.16)) (s)
Table 7

Glossary of frequently used terms

Adjusted time
Adjusted velocity
Affinity cut

Coherence

Coherence velocity

Competitive equilibrium

Composition
Eigenvelocity
H function
High key
History

Keys

Langmuir system
Langmuir-like system

Low key
Nonsharpening wave
Particle velocity
Plateau

Profile

Riemann problem
Root

Selectivity
Selectivity reversal
Self-sharpening wave
Shock

Trajectory

Varying root

Wave

Wave velocity

time adjusted for displacement of fluid in interstitial void upstream of location (Eqs. (I11.16))

distance traveled per unit of adjusted time (Section 7)

of coherent wave: separates solutes into high- and low-affinity groups whose concentrations vary in opposite
directions (Section 4)

state in which coexisting concentrations advance jointly, at same velocity (state which waves in column strive to
attain) (Section 3)

velocity of composition (common to all solutes) in coherent wave (Section 3)

equilibrium in which competition for sorption sites depresses uptake by sorbent (Section 2)

ensemble of concentrations of all solutes

see coherent velocity

left-hand side of Eqs. (IIL6)

see keys

concentration or composition as function of time at specified location

high key (higher affinity) and low key (lower affinity) of coherent wave: solutes whose concentrations vary in
opposite directions and who are adjacent in affinity sequence (Section 4)

system with Langmuir sorption isotherm, q,=a,/[1+Z(b,c,)] (Section 2)

system with sorption equilibrium without selectivity reversals and with competition for sorption capacity
affecting distribution coefficients of all solutes in like manner (Section 2)

see keys

wave with natural tendency to spread (Section 3)

average velocity of molecules of a solute in direction of flow (Section 3)

zone of uniform composition extending over finite distance and time

concentration or composition as function of distance at given time

system with uniform initial composition of column and constant composition of entering fluid

root of H function, transformed composition variable (Egs. (II1.6), (II.8))

preference of sorbent for one solute over another

preference of sorbent for one solute over another with variation of composition

wave with natural tendency to sharpen (Section 3)

wave that has remained (or has sharpened into) ideal discontinuity (Section 3)

curve traced by composition or shock in distance—time plane

only root whose value varies across respective coherent wave (Section 7)

Variation of dependent variables (concentrations) with distance and time (Section 3)

velocity of a concentration, composition,or shock in direction of flow (Section 3)
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T adjusted time coordinate of distance—time
point J (s)

Tn, adjusted emergence time of value of root h,
(s)

), adjusted breakthrough time of plateau & in
frontal analysis (s)

Tan, adjusted emergence time of coherent shock
with varying root A, (s)

Solutes are numbered 1, 2,....n in the sequence of
decreasing affinity for the sorbent.

Primes refer to entering fluid or upstream side of a
wave; double primes, to downstream side of a wave;
superscripts ° to initial fluid; ™ to mixture to be
separated; “ to displacer in displacement develop-
ment.

Distance—time points are lettered A, B,...; plateaus
are lettered a, fB,...

Affinity cuts are denoted by a vertical line be-
tween high key and low key. A bar on the low-key
side indicates that the low-affinity group has no
members.

In distance—time diagrams, shock trajectories are
shown as heavy lines; coherent nonsharpening waves
are shown shaded and with trajectories of com-
positions as thin lines.

Definitions or explanations of frequently used
technical terms are given in Table 7.
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Appendix A

Proof of rules for coherent waves [21]

Mathematical proofs of the rules deduced in
Section 4 with logical arguments can be given as
follows.

The mathematical conditions for Langmuir-like
equilibrium are

a(q;/c;) '
<0 forall jand &k  (IIL.55)
ac, call i#k)
and
d(g,/c;)/dc .
d(qJeyrde 0 forall jandk (IIL56)

where ¢={c,,...,c,} = composition. Condition (IIL.55)
ensures competitive behavior, and (I11.56) guarantees
that all distribution coefficients increase or decrease
jointly. Both conditions are obeyed by isotherms of
the form g;,=ac;f(c), where f(¢) is a function of
moving-phase composition. This includes the Lang-
muir equation (III.1) with positive b, coefficients.

Granted the assumptions of ideal chromatography,
the flux of solute j (in mmol per unit cross-sectional
area and unit time) in the direction of moving-phase
flow can be expressed as

J,=v,C, (I11.57)
where C;=ec;+pg; is the overall or “blind man’s”
concentration of j (amount in both phases per unit
volume of column), that is, the concentration an
observer would find who can analyze for solutes but
cannot distinguish between phases. [Eqs. (IIL.57) is
an alternative to, and equivalent to, the normally
used form Jj=v°cj.] Conservation of matter (inflow
minus outflow equals change in content) with Eqgs.
(II1.57) requires

(8C,/a1), = —div J, = —v,(3C,/3z), — C,(dv,/92),

Using the chain rule for partial derivatives of three
interdependent variables g, r, and s

(3q/ds), = — (dq/dr)(or!ds),

to replace (3C;/dr), and then solving for (dz/ at)c

Ve, and writing (dv;/9C;), for (dv,/92),(9z/9C}), one
obtams 2

Ve, =+ C(dv;/9C)),

If the respective wave is coherent, the wave veloci-
ties of moving-phase, stationary-phase, and blind-
man’s concentrations of all solutes are equal, so that

"*This equation is analogous to the Landau-Lifshitz equation [39]
relating particle and wave velocities in single-phase, compressib-
le-fluid flow.
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the coherent composition velocity v, common to all
can be substituted for v :
J

v, =v; + C(d,/3C)), (II1.58)

All derivations to follow are in terms of blind-man’s
concentrations, q . However, coherence requires the
derivatives dg,/dc; of all solutes to be equal, and a
decrease of all g; with increase of all ¢, is contrary to
the criterion (II1.55) for competitive sorption equilib-
rium. Accordingly, the moving-phase and stationary-
phase concentrations of any solute and therefore also
the blind-man’s concentration of that solute increase
or decrease jointly across a coherent wave. For this
reason, the inequalities derived and rules formulated
from them are equally valid in terms of moving-
phase or stationary-phase concentrations.

For solutes slower and faster than the wave, Egs.
(II1.58) gives

(8v,/3C)),>0 ifv, <v,

(I11.59)

(dv;/0C), <0 ifv,>v,

That is, the particle velocity and concentration of a
solute increase or decrease together if the solute is
slower than the wave, and vary in opposite directions
if the solute is faster than the wave. By definition of
Langmuir-like sorption equilibria, the distribution
coefficients of all solutes increase or decrease jointly
across a wave, and Eq. .5 shows that this is then
true also for the particle velocities. It follows that the
concentrations of solutes slower and faster than the
wave must vary in opposite directions. With Eq. L5,
the solutes slower and faster than the wave can be
identified as belonging to high-affinity and low-
affinity groups, respectively, which do not overlap.
This completes the proof of the affinity cut rule and
elucidates its dependence on Langmuir-like sorption
equilibrium.

A corollary of the second condition (I11.59) is that
the particle velocity and concentration of each solute
vary in opposite directions if all solutes are faster
than the wave. However, Eq. 1.5 combined with the
definition of Langmuir-like equilibrium requires all
particle velocities to increase if all concentrations
increase because all distribution coefficients then
decrease. This makes it impossible for all solutes to
be faster than the wave. On the other hand, the first
condition (III.59) requires the particle velocity and

concentration of any solute slower than the wave to
increase or decrease jointly, as is compatible with
Eq. 15 and Langmuir-like equilibrium even if all
solutes are slower than the wave. This, combined
with the equivalence of grouping by particle veloci-
ties or affinities, proves the rule that all solutes may
belong to the high-affinity group, but not all to the
low-affinity group.

For a solute whose particle velocity equals the
wave velocity, Egs. (I1L.58) gives

(dv,/9C),=0 or C,—0 if v,=v, (IL60)
That is, if the particle velocity of a solute equals the
wave velocity, the particle velocity may not vary
with concentration, or the concentration must be-
come infinitesimal (for an entirely absent solute, no
particle velocity can be defined). If equilibrium is
Langmuir-like, no velocity variation with concen-
tration implies invariant strength of competition and
must be shared by all solutes, but only one solute’s
particle velocity can equal the wave velocity. It
follows that (a) no coherent composition variation is
possible without variation in all particle velocities,
and (b) the concentration of no more than one solute
can become infinitesimal at any one point in or at a
coherent wave. Furthermore, the fact that the particle
velocity of such a solute at such a point must equal
the wave velocity proves that the solute must be the
high key or low key, because otherwise some
members of its group would be faster than the wave
and others slower, contrary to the definition of
groups.

The behavior of ideal shocks, at which gradients
dv;/9C; cannot be defined, is not covered by Eqs.
(II1.58) and the conditions derived from it. Here,
conservation of matter across the shock requires

(€] - C}")dz=(v,C] —v,'C]")dt

where dz is the distance the shock advances in the
time ds. With dz/dtr=v, (velocity of the coherent
shock) and after rearrangement:

v, —v!’ C
A S J
U]-'—v.” c —c" (H1.61)

J 7 J

A consequences of this equation is:

c/=C'

7 J

if v = vj” (111.62)



F.G. Helfferich | J. Chromatogr. A 768 (1997) 169-205 203

All solutes are subject to this requirement. A coher-
ent shock therefore cannot exist between plateaus
with same particle velocities and thus same strength
of competition.

Since all concentrations are positive, the right-
hand side of Eqs. (II.61) is either larger than 1 or
negative. Since all velocities are positive, the first
alternative requires

L ’ re r - ’ rr
vy >v; ifv; >v; or v, <v;ifv; <v;

to make the left-hand side larger than 1. The second
alternative requires

' - ! tr rro. ’ rr
vy, > ifv; <v;” or v, <v; ifv; >v;

to make the left-hand side negative. All possibilities
have in common:

vy<v;,v; orvy>v/, v if v, #v/’ (11.63)
That is, no solute can be faster than the wave on one
side, but slower than the wave on the other side. This
makes the assignment of solutes to slower and faster
groups and thus to high- and low-affinity groups
unambiguous even at shocks.

Egs. (IIL.61) can be rearranged:

c-¢ ¢

T, = — (11164)
v, — U, Uy~ U
A consequence is
(C —CHw,—v/"y>0 ifv)" <v,

) ., , ., o (I11.65)
(€, —C;)Hlv; —v; )<0 ifv, >v,

If sorption equilibrium is Langmuir-like, the shock
side on which the particle velocity is lower is the
same for all solutes, so that (v; —v;") has the same
sign for all solutes. Granted such behavior, con-
ditions (III.65) show that the concentrations of
solutes slower and faster than the shock vary in
opposite directions. With the classification of slower
and faster solutes into high- and low-affinity groups,
respectively, this proves the affinity cut rule for
coherent shocks.

Also, condition (II1.65) shows that the solutes can
all be slower than the shock, but cannot all be faster
than it, because, as was shown before, the particle
velocities necessarily increase if all concentrations
increase. With Eq. 1.5 this proves that at coherent

shocks, too, all solutes may belong to the high-
affinity group, but not all to the low-affinity group.
Another consequence of Eqs. (I11.64) is

C; =0 if v; =v,

., ) ) (111.66)
¢, =0 if v;"=v,
That is, if a solute is present on only one side of the
shock, its particle velocity equals the shock velocity.
Since the particle velocities of all solutes at given
composition differ, only one of them can equal the
shock velocity, so that no more than one solute can
be absent from the same side of the shock while
being present on the other. Moreover, that solute
must be a key, in order that the other members of its
affinity group are either all slower or all faster than
the shock, as required by the definition of groups.

This concludes the proof of the rules in Section 4,
except for obvious consequences already pointed out
in that section.

Appendix B

History of the A-transformation

The A-transformation is much more generally
applicable than only to chromatography and has an
interesting history. Apparently it was first formulated
by J. P. M. Binet [40], a nineteenth-century French
mathematician. Its use in problems involving ellipti-
cal equations of dynamics has been pioneered over a
hundred years ago by the great C. G. J. Jacobi
[41,42], in whose honor the roots are sometimes
called “‘Jacobi elliptical coordinates’”. It has also
been applied in multidimensional differential geome-
try [43]. Outside pure mathematics it is the basis of
Dole’s theory of multicomponent electrophoresis
{44] and Underwood’s widely used stripping-factor
method for estimating the minimum reflux ratio in
multicomponent distillation [45-48]. Other notable
applications include the theories of multicomponent
electro-diffusion by Pleijel {49], extended by Gol-
dman [50] and Teorell [51] and perfected by Schlogl
[27]. Apparently, the use of the transformation in
chromatography was first suggested by Davidson
[52] in 1949. It was later applied to multicomponent
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gas chromatography without a carrier gas by
Zhukhovitskii et al. [53], who assumed the sorbable
species to have independent linear sorption iso-
therms, but to compete for space in the gas phase. Its
use was developed in detail for multicomponent
ion-exchange chromatography with constant sepa-
ration factors [7,54] and adapted to Langmuir-type
adsorption by Helfferich and Klein. For the latter
problem, an essentially equivalent transformation
was introduced later by Rhee et al. [5,6].13 It seems
that few, if any, of the quoted authors (myself
included) were aware of the previous applications
when rediscovering the transformation.
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